{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,4,3]],"date-time":"2022-04-03T22:15:16Z","timestamp":1649024116558},"reference-count":17,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"4","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Inf. & Syst."],"published-print":{"date-parts":[[2016]]},"DOI":"10.1587\/transinf.2015edl8164","type":"journal-article","created":{"date-parts":[[2016,3,31]],"date-time":"2016-03-31T22:20:47Z","timestamp":1459462847000},"page":"1259-1263","source":"Crossref","is-referenced-by-count":3,"title":["Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition"],"prefix":"10.1587","volume":"E99.D","author":[{"given":"Jianhong","family":"WANG","sequence":"first","affiliation":[{"name":"School of Computer Science and Engineering, Southeast University"}]},{"given":"Pinzheng","family":"ZHANG","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Southeast University"}]},{"given":"Linmin","family":"LUO","sequence":"additional","affiliation":[{"name":"School of Computer Science and Engineering, Southeast University"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"crossref","unstructured":"[1] H. Wang, C. Yuan, W. Hu, H. Ling, W. Yang, and C. Sun, \u201cAction recognition using nonnegative action component representation and sparse basis selection,\u201d IEEE Trans. Image Process., vol.23, no.2, pp.570-581, 2014.","DOI":"10.1109\/TIP.2013.2292550"},{"key":"2","unstructured":"[2] Y. Tian, Q. Ruan, G. An, and R. Liu, \u201cLocal non-negative component representation for human action recognition,\u201d ICSP, pp.1317-1320, 2014."},{"key":"3","unstructured":"[3] N. Zhou, Y. Shen, J. Peng, and J. Fan, \u201cLearning inter-related visual dictionary for object recognition,\u201d CVPR, pp.3490-3497, 2012."},{"key":"4","unstructured":"[4] R. Hou, A.R. Zamir, R. Sukthankar, and M. Shah, \u201cDamn-discriminative and mutually nearest: Exploiting pairwise category proximity for video action recognition,\u201d ECCV, vol.8691, pp.721-736, 2014."},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] D.D. Lee and H.S. Seung, \u201cLearning the parts of objects by non-negative matrix factorization,\u201d Nature, vol.401, no.6755, pp.788-791, 1999.","DOI":"10.1038\/44565"},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] B.J. Frey and D. Dueck, \u201cClustering by passing messages between data points,\u201d Science, vol.315, no.5814, pp.972-976, 2007.","DOI":"10.1126\/science.1136800"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] M. Yang, L. Zhang, X. Feng, and D. Zhang, \u201cSparse representation based fisher discrimination dictionary learning for image classification,\u201d Int. J. Comput. Vis., vol.109, no.3, pp.209-232, 2014.","DOI":"10.1007\/s11263-014-0722-8"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] K.K. Reddy and M. Shah, \u201cRecognizing 50 human action categories of web videos,\u201d Mach. Vision Appl., vol.24, no.5, pp.971-981, 2013.","DOI":"10.1007\/s00138-012-0450-4"},{"key":"9","unstructured":"[9] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, \u201cHmdb: a large video database for human motion recognition,\u201d ICCV, pp.2556-2563, 2011."},{"key":"10","unstructured":"[10] K. Soomro, A.R. Zamir, and M. Shah, \u201cUCF101: A dataset of 101 human actions classes from videos in the wild,\u201d Tech. Rep. CRCV-TR-12-01, UCF, 2012."},{"key":"11","unstructured":"[11] H. Wang and C. Schmid, \u201cAction recognition with improved trajectories,\u201d ICCV, pp.3551-3558, 2013."},{"key":"12","unstructured":"[12] L. Liu, L. Wang, and X. Liu, \u201cIn defense of soft-assignment coding,\u201d ICCV, pp.2486-2493, 2011."},{"key":"13","unstructured":"[13] S. Sadanand and J.J. Corso, \u201cAction bank: A high-level representation of activity in video,\u201d CVPR, pp.1234-1241, 2012."},{"key":"14","unstructured":"[14] L. Wang, Y. Qiao, and X. Tang, \u201cMotionlets: Mid-level 3d parts for human motion recognition,\u201d CVPR, pp.2674-2681, 2013."},{"key":"15","unstructured":"[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, \u201cLarge-scale video classification with convolutional neural networks,\u201d CVPR, pp.1725-1732, 2014."},{"key":"16","unstructured":"[16] F. Shi, E. Petriu, and R. Laganiere, \u201cSampling strategies for real-time action recognition,\u201d CVPR, pp.2595-2602, 2013."},{"key":"17","unstructured":"[17] J. Wu, Y. Zhang, and W. Lin, \u201cTowards good practices for action video encoding,\u201d CVPR, pp.2577-2584, 2014."}],"container-title":["IEICE Transactions on Information and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E99.D\/4\/E99.D_2015EDL8164\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,6,24]],"date-time":"2017-06-24T09:46:58Z","timestamp":1498297618000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E99.D\/4\/E99.D_2015EDL8164\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"references-count":17,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2016]]}},"URL":"https:\/\/doi.org\/10.1587\/transinf.2015edl8164","relation":{},"ISSN":["0916-8532","1745-1361"],"issn-type":[{"value":"0916-8532","type":"print"},{"value":"1745-1361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016]]}}}