{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,4,4]],"date-time":"2022-04-04T14:44:25Z","timestamp":1649083465590},"reference-count":13,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"12","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Fundamentals"],"published-print":{"date-parts":[[2016]]},"DOI":"10.1587\/transfun.e99.a.2425","type":"journal-article","created":{"date-parts":[[2016,11,30]],"date-time":"2016-11-30T17:10:39Z","timestamp":1480525839000},"page":"2425-2434","source":"Crossref","is-referenced-by-count":3,"title":["A New Algorithm for Reducing Components of a Gaussian Mixture Model"],"prefix":"10.1587","volume":"E99.A","author":[{"given":"Naoya","family":"YOKOYAMA","sequence":"first","affiliation":[{"name":"Chuo University"}]},{"given":"Daiki","family":"AZUMA","sequence":"additional","affiliation":[{"name":"Chuo University"}]},{"given":"Shuji","family":"TSUKIYAMA","sequence":"additional","affiliation":[{"name":"Chuo University"}]},{"given":"Masahiro","family":"FUKUI","sequence":"additional","affiliation":[{"name":"Ritsumeikan University"}]}],"member":"532","reference":[{"key":"1","unstructured":"[1] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and Optimization for VLSI: Timing and Power, Springer, 2005."},{"key":"2","doi-asserted-by":"crossref","unstructured":"[2] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, \u201cStatistical timing analysis: From basic principles to state of the art,\u201d IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.27, no.4, pp.589-607, 2008.","DOI":"10.1109\/TCAD.2007.907047"},{"key":"3","doi-asserted-by":"crossref","unstructured":"[3] S. Takahashi and S. Tsukiyama, \u201cA new statistical timing analysis using Gaussian mixture models for delay and slew propagated together,\u201d IEICE Trans. Fundamentals, vol.E92-A, no.3, pp.900-911, 2009.","DOI":"10.1587\/transfun.E92.A.900"},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] S. Tsukiyama and M. Fukui, \u201cA statistical maximum algorithm for Gaussian mixture models considering the cumulative distribution function curve,\u201d IEICE Trans. Fundamentals, vol.E94-A, no.12, pp.2528-2536, 2011.","DOI":"10.1587\/transfun.E94.A.2528"},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] D. Sasaki, S. Tsukiyama, M. Matsunaga, O. Ishibashi, and S. Takahashi, \u201cA statistical method for analyzing lifetime of a battery pack,\u201d 2015 IEEE Power & Energy Society General Meeting, pp.1-5, 2015.","DOI":"10.1109\/PESGM.2015.7286118"},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] D.J. Salmond, \u201cMixture reduction algorithms for target tracking in clutter,\u201d Signal and Data Processing of Small Targets 1990, pp.434-445, 1990.","DOI":"10.1117\/12.21610"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] J.L. Williams and P.S. Maybeck, \u201cCost-function-based Gaussian mixture reduction for target tracking,\u201d Proc. 6th International Conference of Information Fusion, pp.1047-1054, 2003.","DOI":"10.1109\/ICIF.2003.177354"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] A.R. Runnalls, \u201cKullback-Leibler approach to Gaussian mixture reduction,\u201d IEEE Trans. Aerosp. Electron. Syst., vol.43, no.3, pp.989-999, 2007.","DOI":"10.1109\/TAES.2007.4383588"},{"key":"9","unstructured":"[9] M.F. Huber and U.D. Hanebeck, \u201cProgressive Gaussian mixture reduction,\u201d Proc. 11th Int. Conf. Information Fusion, pp.1-8, 2008."},{"key":"10","unstructured":"[10] D. Schieferdecker and M.F. Huber, \u201cGaussian mixture reduction via clustering,\u201d Proc. 12th Int. Conf. Information Fusion, pp.1536-1543, 2009."},{"key":"11","doi-asserted-by":"crossref","unstructured":"[11] G. Valverde, J.Q. Tortos, and V. Terzija, \u201cComparison of Gaussian mixture reductions for probabilistic studies in power systems,\u201d 2012 IEEE Power and Energy Society General Meeting, pp.1-7, 2012.","DOI":"10.1109\/PESGM.2012.6345346"},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] A. Ogawa and S. Takahashi, \u201cWeighted distance measures for efficient reduction of Gaussian mixture components in HMM-based acoustic model,\u201d Proc. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.4173-4176, 2008.","DOI":"10.1109\/ICASSP.2008.4518574"},{"key":"13","unstructured":"[13] N. Yokoyama, S. Tsukiyama, and M. Fukui, \u201cAn algorithm to reduce components of a Gaussian mixture model considering distribution shape of each component,\u201d IEICE Technical Report, CPSY2014-170, 2015 (in Japanese)."}],"container-title":["IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E99.A\/12\/E99.A_2425\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,15]],"date-time":"2019-09-15T23:54:54Z","timestamp":1568591694000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E99.A\/12\/E99.A_2425\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"references-count":13,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2016]]}},"URL":"https:\/\/doi.org\/10.1587\/transfun.e99.a.2425","relation":{},"ISSN":["0916-8508","1745-1337"],"issn-type":[{"value":"0916-8508","type":"print"},{"value":"1745-1337","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016]]}}}