{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,3,31]],"date-time":"2022-03-31T02:49:45Z","timestamp":1648694985515},"reference-count":34,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"7","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Fundamentals"],"published-print":{"date-parts":[[2014]]},"DOI":"10.1587\/transfun.e97.a.1468","type":"journal-article","created":{"date-parts":[[2014,7,1]],"date-time":"2014-07-01T14:44:28Z","timestamp":1404225868000},"page":"1468-1482","source":"Crossref","is-referenced-by-count":2,"title":["Comparative Evaluation of Lifetime Enhancement with Fault Avoidance on Dynamically Reconfigurable Devices"],"prefix":"10.1587","volume":"E97.A","author":[{"given":"Hiroaki","family":"KONOURA","sequence":"first","affiliation":[{"name":"Department of Information Systems Engineering, Osaka University"},{"name":"JST, CREST"}]},{"given":"Takashi","family":"IMAGAWA","sequence":"additional","affiliation":[{"name":"JST, CREST"},{"name":"Department of Communications and Computer Engineering, Kyoto University"}]},{"given":"Yukio","family":"MITSUYAMA","sequence":"additional","affiliation":[{"name":"JST, CREST"},{"name":"School of Systems Engineering, Kochi University of Technology"}]},{"given":"Masanori","family":"HASHIMOTO","sequence":"additional","affiliation":[{"name":"Department of Information Systems Engineering, Osaka University"},{"name":"JST, CREST"}]},{"given":"Takao","family":"ONOYE","sequence":"additional","affiliation":[{"name":"Department of Information Systems Engineering, Osaka University"},{"name":"JST, CREST"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"crossref","unstructured":"[1] S.A. Sundberg, \u201cHigh-throughput and ultra-high-throughput screening: Solution-and cell-based approaches,\u201d Current Opinion in Biotechnology, vol.11, no.1, pp.47-53, 2000.","DOI":"10.1016\/S0958-1669(99)00051-8"},{"key":"2","unstructured":"[2] D. Ernst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge, \u201cRazor: A low-power pipeline based on circuit-level timing speculation,\u201d Proc. MICRO, pp.7-18, 2003."},{"key":"3","doi-asserted-by":"crossref","unstructured":"[3] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, \u201cModeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS,\u201d IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.24, no.12, pp.1859-1880, 2005.","DOI":"10.1109\/TCAD.2005.852295"},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] O. Khan and S. Kundu, \u201cA self-adaptive system architecture to address transistor aging,\u201d Proc. DATE, pp.81-86, 2009.","DOI":"10.1109\/DATE.2009.5090637"},{"key":"5","unstructured":"[5] A. Doumar, S. Kaneko, and H. Ito, \u201cDefect and fault tolerance FPGAs by shifting the configuration data,\u201d Proc. DFT, pp.377-385, 1999."},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] T. Koal and H.T. Vierhaus, \u201cOptimal spare utilization for reliability and mean lifetime improvement of logic built-in self-repair,\u201d Proc. DDECS, pp.219-224, 2011.","DOI":"10.1109\/DDECS.2011.5783083"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] S. Eisenhardt, A. K\u00fcster, T. Schweizer, T. Kuhn, and W. Rosenstiel, \u201cSpatial and temporal data path remapping for fault-tolerant coarse-grained reconfigurable architectures,\u201d Proc. DFT, pp.382-388, 2011.","DOI":"10.1109\/DFT.2011.7"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] M. Parris, C.A. Sharma, and R.F. DeMara, \u201cProgress in autonomous fault recovery of field programmable gate arrays,\u201d ACM Computing Surveys, vol.43, no.4, pp.31: 1-31: 30, 2010.","DOI":"10.1145\/1978802.1978810"},{"key":"9","doi-asserted-by":"crossref","unstructured":"[9] A. Doumar and H. Ito, \u201cDetecting, diagnosing, and tolerating faults in SRAM-based field programmable gate arrays: A survey,\u201d IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.11, no.3, pp.386-405, 2003.","DOI":"10.1109\/TVLSI.2002.801609"},{"key":"10","unstructured":"[10] J.C. Laprie, \u201cDependable computing and fault-tolerance: Concepts and terminology,\u201d Proc. FTCS, pp.2-11, 1985."},{"key":"11","doi-asserted-by":"crossref","unstructured":"[11] H. Konoura, Y. Mitsuyama, M. Hashimoto, and T. Onoye, \u201cImplications of reliability enhancement achieved by fault avoidance on dynamically reconfigurable architectures,\u201d Proc. FPL, pp.189-194, 2011.","DOI":"10.1109\/FPL.2011.108"},{"key":"12","unstructured":"[12] J.M. Soden, R.K. Treece, M.R. Taylor, and C.F. Hawkins, \u201cCMOS IC stuck-open fault electrical effects and design considerations,\u201d Proc. ITC, pp.423-430, 1989."},{"key":"13","doi-asserted-by":"crossref","unstructured":"[13] J.E. Vinson and J.J. Liou, \u201cElectrostatic discharge in semiconductor devices: An overview,\u201d Proc. IEEE, vol.86, no.2, pp.399-420, 1998.","DOI":"10.1109\/5.659493"},{"key":"14","doi-asserted-by":"crossref","unstructured":"[14] B.C. Paul, K. Kang, H. Kufluoglu, M.A. Alam, and K. Roy, \u201cImpact of NBTI on the temporal performance degradation of digital circuits,\u201d IEEE Electron Device Lett., vol.26, no.8, pp.560-562, 2005.","DOI":"10.1109\/LED.2005.852523"},{"key":"15","doi-asserted-by":"crossref","unstructured":"[15] K.L. Chen, S.A. Saller, I.A. Groves, and D.B. Scott, \u201cReliability effects on mos transistors due to hot-carrier injection,\u201d IEEE J. Solid-State Circuits, vol.20, no.1, pp.306-313, 1985.","DOI":"10.1109\/JSSC.1985.1052307"},{"key":"16","unstructured":"[16] J. Noguchi, T. Saito, N. Ohashi, H. Ashihara, H. Maruyama, M. Kubo, H. Yamaguchi, D. Ryuzaki, K.I. Takeda, and K. Hinode, \u201cImpact of low-k dielectrics and barrier metals on TDDB lifetime of Cu interconnects,\u201d Proc. IRPS, pp.355-359, 2001."},{"key":"17","doi-asserted-by":"crossref","unstructured":"[17] R. Lyons and W. Vanderkulk, \u201cThe use of triple-modular redundancy to improve computer reliability,\u201d IBM Journal of Research and Development, vol.6, no.2, pp.200-209, 1962.","DOI":"10.1147\/rd.62.0200"},{"key":"18","doi-asserted-by":"crossref","unstructured":"[18] T. Inoue, T. Fujii, and H. Ichihara, \u201cA self-test of dynamically reconfigurable processors with test frames,\u201d IEICE Trans. Inf.&Syst., vol.E91-D, no.3, pp.756-762, March 2008.","DOI":"10.1093\/ietisy\/e91-d.3.756"},{"key":"19","doi-asserted-by":"crossref","unstructured":"[19] T. Kameda, H. Konoura, D. Alnajjar, Y. Mitsuyama, M. Hashimoto, and T. Onoye, \u201cA predictive delay fault avoidance scheme for coarse-grained reconfigurable architectures,\u201d Proc. FPL, pp.615-618, 2012.","DOI":"10.1109\/FPL.2012.6339220"},{"key":"20","doi-asserted-by":"crossref","unstructured":"[20] D. Alnajjar, Y. Ko, T. Imagawa, H. Konoura, M. Hiromoto, Y. Mitsuyama, M. Hashimoto, H. Ochi, and T. Onoye, \u201cCoarse-grained dynamically reconfigurable architecture with flexible reliability,\u201d Proc. FPL, pp.186-192, 2009.","DOI":"10.1109\/FPL.2009.5272317"},{"key":"21","unstructured":"[21] A. Shibayama, H. Igura, M. Mizuno, and M. Yamashina, \u201cAn autonomous reconfigurable cell array for fault-tolerant LSIs,\u201d Proc. ISSCC, pp.230-231, 1997."},{"key":"22","unstructured":"[22] F. Hatori, T. Sakurai, K. Nogami, K. Sawada, M. Takahashi, M. Ichida, M. Uchida, I. Yoshii, Y. Kawahara, T. Hibi, Y. Saeki, H. Muroga, A. Tanaka, and K. Kanzaki, \u201cIntroducing redundancy in field programmable gate arrays,\u201d Proc. CICC, pp.1-7, 1993."},{"key":"23","doi-asserted-by":"crossref","unstructured":"[23] Z.E. Rakosi, M. Hiromoto, H. Ochi, and Y. Nakamura, \u201cHot-swapping architecture extension for mitigation of permanent functional unit faults,\u201d Proc. FPL, pp.578-581, 2009.","DOI":"10.1109\/FPL.2009.5272428"},{"key":"24","doi-asserted-by":"crossref","unstructured":"[24] F. Hanchek and S. Dutt, \u201cMethodologies for tolerating cell and interconnect faults in FPGAs,\u201d IEEE Trans. Comput., vol.47, no.1, pp.15-33, 1998.","DOI":"10.1109\/12.656073"},{"key":"25","doi-asserted-by":"crossref","unstructured":"[25] L. Shang, M. Zhou, Y. Hu, and E. Yang, \u201cA domain partition model approach to the online fault recovery of FPGA-based reconfigurable systems,\u201d IEICE Trans. Fundamentals, vol.E94-A, no.1, pp.290-299, Jan. 2011.","DOI":"10.1587\/transfun.E94.A.290"},{"key":"26","doi-asserted-by":"crossref","unstructured":"[26] J. Lach and W.H. Mangione-Smith, \u201cLow overhead fault-tolerant FPGA systems,\u201d IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.6, no.2, pp.212-221, 1998.","DOI":"10.1109\/92.678870"},{"key":"27","doi-asserted-by":"crossref","unstructured":"[27] N.J. Macias and L.J.K. Durbeck, \u201cAdaptive methods for growing electronic circuits on an imperfect synthetic matrix,\u201d Biosystems, vol.73, no.3, pp.173-204, 2004.","DOI":"10.1016\/j.biosystems.2003.12.003"},{"key":"28","doi-asserted-by":"crossref","unstructured":"[28] R.S. Oreifej, C.A. Sharma, and R.F. DeMara, \u201cExpediting GA-based evolution using group testing techniques for reconfigurable hardware,\u201d Proc. ReConFig, pp.1-8, 2006.","DOI":"10.1109\/RECONF.2006.307760"},{"key":"29","unstructured":"[29] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, \u201cDynamic fault tolerance in FPGAs via partial reconfiguration,\u201d Proc. FPCCM, pp.165-174, 2000."},{"key":"30","doi-asserted-by":"crossref","unstructured":"[30] V. Betz and J. Rose, \u201cVPR: A new packing, placement and routing tool for FPGA research,\u201d Proc. FPL, pp.213-222, 1997.","DOI":"10.1007\/3-540-63465-7_226"},{"key":"31","doi-asserted-by":"crossref","unstructured":"[31] L. McMurchie and C. Ebeling, \u201cPathFinder: A negotiation-based performance-driven router for FPGAs,\u201d Proc. FPGA, pp.111-117, 1995.","DOI":"10.1109\/FPGA.1995.242049"},{"key":"32","doi-asserted-by":"crossref","unstructured":"[32] J. Lou, S. Thakur, S. Krishnamoorthy, and H.S. Sheng, \u201cEstimating routing congestion using probabilistic analysis,\u201d IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.21, no.1, pp.32-41, 2002.","DOI":"10.1109\/43.974135"},{"key":"33","doi-asserted-by":"crossref","unstructured":"[33] Y.H. Lee, N. Mielke, M. Agostinelli, S. Gupta, R. Lu, and W. McMahon, \u201cPrediction of logic product failure due to thin-gate oxide breakdown,\u201d Proc. IRPS, pp.18-28, 2006.","DOI":"10.1109\/RELPHY.2006.251187"},{"key":"34","unstructured":"[34] T. Imagawa, M. Hiromoto, H. Ochi, and T. Sato, \u201cReliability evaluation environment for exploring design space of coarse-grained reconfigurable architectures,\u201d IEICE Trans. Fundamentals, vol.E93-A, no.12, pp.2524-2532, Dec. 2010."}],"container-title":["IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E97.A\/7\/E97.A_1468\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,26]],"date-time":"2021-04-26T06:03:36Z","timestamp":1619417016000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E97.A\/7\/E97.A_1468\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014]]},"references-count":34,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2014]]}},"URL":"https:\/\/doi.org\/10.1587\/transfun.e97.a.1468","relation":{},"ISSN":["0916-8508","1745-1337"],"issn-type":[{"value":"0916-8508","type":"print"},{"value":"1745-1337","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014]]}}}