{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,3,30]],"date-time":"2022-03-30T14:12:09Z","timestamp":1648649529927},"reference-count":22,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"6","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Fundamentals"],"published-print":{"date-parts":[[2017]]},"DOI":"10.1587\/transfun.e100.a.1279","type":"journal-article","created":{"date-parts":[[2017,5,31]],"date-time":"2017-05-31T22:22:46Z","timestamp":1496269366000},"page":"1279-1285","source":"Crossref","is-referenced-by-count":1,"title":["Toward Large-Pixel Number High-Speed Imaging Exploiting Time and Space Sparsity"],"prefix":"10.1587","volume":"E100.A","author":[{"given":"Naoki","family":"NOGAMI","sequence":"first","affiliation":[{"name":"Graduate School of Information Science and Engineering, Ritsumeikan University"}]},{"given":"Akira","family":"HIRABAYASHI","sequence":"additional","affiliation":[{"name":"College of Information Science and Engineering, Ritsumeikan University"}]},{"given":"Takashi","family":"IJIRI","sequence":"additional","affiliation":[{"name":"College of Information Science and Engineering, Ritsumeikan University"}]},{"given":"Jeremy","family":"WHITE","sequence":"additional","affiliation":[{"name":"College of Information Science and Engineering, Ritsumeikan University"}]}],"member":"532","reference":[{"key":"1","unstructured":"[1] nac Image Technology high speed camera HX-3. [Online]. Available: http:\/\/www.nacinc.com\/products\/memrecam-high-speed-digital-cameras\/hx-3\/"},{"key":"2","unstructured":"[2] SONY high speed camera RX10II. [Online]. Available: http:\/\/www.sony.jp\/cyber-shot\/products\/DSC-RX10M2\/"},{"key":"3","doi-asserted-by":"crossref","unstructured":"[3] R. Baraniuk, \u201cCompressive sensing [lecture notes],\u201d IEEE Signal Process. Mag., vol.24, no.4, pp.118-121, July 2007.","DOI":"10.1109\/MSP.2007.4286571"},{"key":"4","unstructured":"[4] TEXAS INSTRUMENTS DLP7000. Available: http:\/\/www.ti.com\/product\/dlp7000"},{"key":"5","unstructured":"[5] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, \u201cAn architecture for compressive imaging,\u201d 2006 IEEE International Conference on Image Processing, pp.1273-1276, 2006."},{"key":"6","unstructured":"[6] L. Kang and C. Lu, \u201cDistributed compressive video sensing,\u201d IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), pp.1169-1172, 2009."},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] N. Vaswani, \u201cKalman filtered compressed sensing,\u201d 15th IEEE International Conference on Image Processing (ICIP 2008), pp.893-896, 2008.","DOI":"10.1109\/ICIP.2008.4711899"},{"key":"8","unstructured":"[8] N. Vaswani, \u201cLS-CS-residual (LS-CS): Compressive sensing on least squares residual,\u201d IEEE Trans. Signal Process., vol.58, no.8, pp.4108-4120, 2010."},{"key":"9","unstructured":"[9] S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, and T.Q. Nguyen, \u201cAn augmented lagrangian method for total variation video restoration,\u201d IEEE Trans. Image Process., vol.20, no.11, pp.3097-3111, 2011."},{"key":"10","doi-asserted-by":"crossref","unstructured":"[10] H. Chen, L. Kang, and C. Lu, \u201cDictionary learning-based distributed compressive video sensing,\u201d Picture Coding Symposium (PCS), pp.210-213, 2010.","DOI":"10.1109\/PCS.2010.5702466"},{"key":"11","unstructured":"[11] J. Yang, J. Wright, T. Huang, and Y. Ma, \u201cImage super-resolution via sparse representation,\u201d IEEE Trans. Image Process., vol.19, no.11, pp.2861-2873, 2010."},{"key":"12","unstructured":"[12] Y. Song, Z. Zhu, Y. Lu, Q. Liu, and J. Zhao, \u201cReconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning,\u201d Magnet. Reson. Med., vol.71, no.3, pp.1285-1298, 2014."},{"key":"13","unstructured":"[13] A. Hirabayashi, N. Nogami, J. White, and L. Condat, \u201cPixel enlargement in high-speed camera image acquisition based on 3D sparse representations,\u201d Proc. 2015 IEEE International Workshop on Signal Processing Systems, Hangzhou, 2015."},{"key":"14","doi-asserted-by":"crossref","unstructured":"[14] E. Candes and Y. Plan, \u201cMatrix completion with noise,\u201d Proc. IEEE, vol.98, no.6, pp.925-936, June 2010.","DOI":"10.1109\/JPROC.2009.2035722"},{"key":"15","unstructured":"[15] R. Ma, N. Barzigar, A. Roozgard, and S. Cheng, \u201cDecomposition approach for low-rank matrix completion and its applications,\u201d IEEE Trans. Signal Process., vol.62, no.7, pp.1671-1683, April 2014."},{"key":"16","unstructured":"[16] F. Cao, M. Cai, and Y. Tan, \u201cImage interpolation via low-rank matrix completion and recovery,\u201d IEEE Trans. Circuits Syst. Video Technol., vol.25, no.8, pp.1261-1270, Aug. 2015."},{"key":"17","unstructured":"[17] nac Image Technology high speed camera Optronis CR450x3. [Online]. Available: https:\/\/www.nacinc.jp\/analysis\/camrecord-cr-series\/"},{"key":"18","doi-asserted-by":"crossref","unstructured":"[18] H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Luke, and H. Wolkowicz, eds., Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011.","DOI":"10.1007\/978-1-4419-9569-8"},{"key":"19","unstructured":"[19] N. Vaswani, Recursive Reconstruction of Sparse Signal Sequences (or Sequential Compressed Sensing), Available: http:\/\/www.ece.iastate.edu\/~namrata\/research\/SequentialCS.html"},{"key":"20","unstructured":"[20] CVX: Matlab Software for Disciplined Convex Programming, Available: http:\/\/cvxr.com\/cvx\/"},{"key":"21","unstructured":"[21] nac Image Technology high speed camera GX-8. [Online]. Available: https:\/\/www.nacinc.jp\/analysis\/memrecam-gx-8\/"},{"key":"22","unstructured":"[22] nac Image Technology high speed camera MEMRECAM Q1v. [Online]. Available: https:\/\/www.nacinc.jp\/analysis\/memrecam-q1mq1v\/"}],"container-title":["IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E100.A\/6\/E100.A_1279\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,25]],"date-time":"2019-09-25T10:01:24Z","timestamp":1569405684000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E100.A\/6\/E100.A_1279\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"references-count":22,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2017]]}},"URL":"https:\/\/doi.org\/10.1587\/transfun.e100.a.1279","relation":{},"ISSN":["0916-8508","1745-1337"],"issn-type":[{"value":"0916-8508","type":"print"},{"value":"1745-1337","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017]]}}}