{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,6]],"date-time":"2024-01-06T05:04:44Z","timestamp":1704517484403},"reference-count":22,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"1","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Fundamentals"],"published-print":{"date-parts":[[2024,1,1]]},"DOI":"10.1587\/transfun.2023kep0010","type":"journal-article","created":{"date-parts":[[2023,7,18]],"date-time":"2023-07-18T22:11:33Z","timestamp":1689718293000},"page":"96-104","source":"Crossref","is-referenced-by-count":0,"title":["Wafer-Level Characteristic Variation Modeling Considering Systematic Discontinuous Effects"],"prefix":"10.1587","volume":"E107.A","author":[{"given":"Takuma","family":"NAGAO","sequence":"first","affiliation":[{"name":"Nara Institute of Science and Technology"}]},{"given":"Tomoki","family":"NAKAMURA","sequence":"additional","affiliation":[{"name":"Sony Semiconductor Manufacturing Corporation"}]},{"given":"Masuo","family":"KAJIYAMA","sequence":"additional","affiliation":[{"name":"Sony Semiconductor Manufacturing Corporation"}]},{"given":"Makoto","family":"EIKI","sequence":"additional","affiliation":[{"name":"Sony Semiconductor Manufacturing Corporation"}]},{"given":"Michiko","family":"INOUE","sequence":"additional","affiliation":[{"name":"Nara Institute of Science and Technology"}]},{"given":"Michihiro","family":"SHINTANI","sequence":"additional","affiliation":[{"name":"Kyoto Institute of Technology"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"publisher","unstructured":"[1] L.C. Wang, \u201cExperience of data analytics in EDA and test \u2014 Principles promises, and challenges,\u201d IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.36, no.6, pp.885-898, 2017. 10.1109\/tcad.2016.2621883","DOI":"10.1109\/TCAD.2016.2621883"},{"key":"2","doi-asserted-by":"crossref","unstructured":"[2] H.G. Stratigopoulos, \u201cMachine learning applications in IC testing,\u201d Proc. ETS, 2018. 10.1109\/ets.2018.8400701","DOI":"10.1109\/ETS.2018.8400701"},{"key":"3","doi-asserted-by":"publisher","unstructured":"[3] W. Zhang, X. Li, F. Liu, E. Acar, R.A. Rutenbar, and R.D. Blanton, \u201cVirtual probe: A statistical framework for low-cost silicon characterization of nanoscale integrated circuits,\u201d IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.30, no.7, pp.1814-1827, 2011. 10.1109\/tcad.2011.2164536","DOI":"10.1109\/TCAD.2011.2164536"},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] N. Kupp, K. Huang, J.M. Carulli, and Y. Makris, \u201cSpatial correlation modeling for probe test cost reduction in RF devices,\u201d Proc. ICCAD, pp.23-29, 2012. 10.1145\/2429384.2429390","DOI":"10.1145\/2429384.2429390"},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] K. Huang, N. Kupp, J.M. Carulli, and Y. Makris, \u201cHandling discontinuous effects in modeling spatial correlation of wafer-level analog\/RF tests,\u201d Proc. DATE, pp.553-558, 2013. 10.7873\/date.2013.123","DOI":"10.7873\/DATE.2013.123"},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] A. Ahmadi, K. Huang, S. Natarajan, J.M. Carulli, and Y. Makris, \u201cSpatio-temporal wafer-level correlation modeling with progressive sampling: A pathway to HVM yield estimation,\u201d Proc. ITC, p.18.1, 2014. 10.1109\/test.2014.7035325","DOI":"10.1109\/TEST.2014.7035325"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] M. Shintani, R.-U.-H. Mian, M. Inoue, T. Nakamura, M. Kajiyama, and M. Eiki, \u201cWafer-level variation modeling for multi-site RF IC testing via hierarchical Gaussian process,\u201d Proc. ITC, pp.103-112, 2021. 10.1109\/itc50571.2021.00018","DOI":"10.1109\/ITC50571.2021.00018"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] E.J. Marinissen, A. Singh, D. Glotter, M. Esposito, J.M. Carulli, A. Nahar, K.M. Butler, D. Appello, and C. Portelli, \u201cAdapting to adaptive testing,\u201d Proc. DATE, pp.556-561, 2010. 10.1109\/date.2010.5457143","DOI":"10.1109\/DATE.2010.5457143"},{"key":"9","doi-asserted-by":"publisher","unstructured":"[9] D.L. Donoho, \u201cCompressed sensing,\u201d IEEE Trans. Inf. Theory, vol.52, no.4, pp.1289-1306, 2006. 10.1109\/tit.2006.871582","DOI":"10.1109\/TIT.2006.871582"},{"key":"10","unstructured":"[11] D. Arthur and S. Vassilvitskii, \u201ck-means++: The advantages of careful seeding,\u201d Proc. SODA, pp.1027-1035, 2007."},{"key":"11","doi-asserted-by":"crossref","unstructured":"[12] T. Nagao, T. Nakamura, M. Kajiyama, M. Eiki, M. Inoue, and M. Shintani, \u201cWafer-level characteristic variation modeling considering systematic discontinuous effects,\u201d Proc. ASP-DAC, pp.442-448, 2023. 10.1145\/3566097.3567915","DOI":"10.1145\/3566097.3567915"},{"key":"12","doi-asserted-by":"publisher","unstructured":"[13] K.J. Kuhn, M.D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S.T. Ma, A. Maheshwari, and S. Mudanai, \u201cProcess technology variation,\u201d IEEE Trans. Electron Devices, vol.58, no.8, pp.2197-2208, 2011. 10.1109\/ted.2011.2121913","DOI":"10.1109\/TED.2011.2121913"},{"key":"13","unstructured":"[14] D. Duvenaud, \u201cThe kernel cookbook,\u201d [Online]. Available: https:\/\/www.cs.toronto.edu\/~duvenaud\/cookbook\/"},{"key":"14","unstructured":"[15] M.G. Genton, \u201cClasses of kernels for machine learning: A statistics perspective,\u201d J. Mach. Learn. Res., vol.2, pp.299-312, 2001."},{"key":"15","doi-asserted-by":"publisher","unstructured":"[16] S. Ohkawa, M. Aoki, and H. Masuda, \u201cAnalysis and characterization of device variations in an LSI chip using an integrated device matrix array,\u201d IEEE Trans. Semicond. Manuf., vol.17, no.2, pp.155-165, 2004. 10.1109\/tsm.2004.827001","DOI":"10.1109\/TSM.2004.827001"},{"key":"16","doi-asserted-by":"publisher","unstructured":"[17] S. Saxena, C. Hess, H. Karbasi, A. Rossoni, S. Tonello, P. McNamara, S. Lucherini, S. Minehane, C. Dolainsky, and M. Quarantelli, \u201cVariation in transistor performance and leakage in nanometer-scale technologies,\u201d IEEE Trans. Electron Devices, vol.55, no.1, pp.131-144, 2008. 10.1109\/ted.2007.911351","DOI":"10.1109\/TED.2007.911351"},{"key":"17","doi-asserted-by":"crossref","unstructured":"[18] K. Huang, N. Kupp, J.M. Carulli, and Y. Makris, \u201cProcess monitoring through wafer-level spatial variation decomposition,\u201d Proc. ITC, p.5.3, 2013. 10.1109\/test.2013.6651901","DOI":"10.1109\/TEST.2013.6651901"},{"key":"18","doi-asserted-by":"publisher","unstructured":"[19] C. Xanthopoulos, A. Neckermann, P. List, K.P. Tschernay, P. Sarson, and Y. Makris, \u201cAutomated die inking,\u201d IEEE Trans. Device Mater. Rel., vol.20, no.2, pp.295-307, 2020. 10.1109\/tdmr.2020.2994291","DOI":"10.1109\/TDMR.2020.2994291"},{"key":"19","doi-asserted-by":"crossref","unstructured":"[20] S. Seo, M. Wallat, T. Graepel, and K. Obermayer, \u201cGaussian process regression: Active data selection and test point rejection,\u201d Proc. IJCNN, pp.241-246, 2000. 10.1109\/IJCNN.2000.861310","DOI":"10.1007\/978-3-642-59802-9_4"},{"key":"20","unstructured":"[21] GPy, \u201cGPy: A gaussian process framework in python,\u201d http:\/\/github.com\/SheffieldML\/GPy, since 2012."},{"key":"21","unstructured":"[22] F. Pedregosa, et al., \u201cScikit-learn: Machine learning in Python,\u201d J. Mach. Learn. Res., vol.12, pp.2825-2830, 2011."},{"key":"22","doi-asserted-by":"publisher","unstructured":"[23] C. Goutte, P. Toft, E. Rostrup, F. Nielsen, and L.K. Hansen, \u201cOn clustering fMRI time series,\u201d NeuroImage, vol.9, no.3, pp.298-310, 1999. 10.1006\/nimg.1998.0391","DOI":"10.1006\/nimg.1998.0391"}],"container-title":["IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E107.A\/1\/E107.A_2023KEP0010\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,6]],"date-time":"2024-01-06T03:16:03Z","timestamp":1704510963000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E107.A\/1\/E107.A_2023KEP0010\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1,1]]},"references-count":22,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2024]]}},"URL":"https:\/\/doi.org\/10.1587\/transfun.2023kep0010","relation":{},"ISSN":["0916-8508","1745-1337"],"issn-type":[{"value":"0916-8508","type":"print"},{"value":"1745-1337","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1,1]]},"article-number":"2023KEP0010"}}