{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,11]],"date-time":"2024-05-11T00:12:26Z","timestamp":1715386346873},"reference-count":26,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"5","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Fundamentals"],"published-print":{"date-parts":[[2023,5,1]]},"DOI":"10.1587\/transfun.2022mai0001","type":"journal-article","created":{"date-parts":[[2022,10,23]],"date-time":"2022-10-23T22:21:46Z","timestamp":1666563706000},"page":"698-706","source":"Crossref","is-referenced-by-count":1,"title":["Thermal-Comfort Aware Online Co-Scheduling Framework for HVAC, Battery Systems, and Appliances in Smart Buildings"],"prefix":"10.1587","volume":"E106.A","author":[{"given":"Daichi","family":"WATARI","sequence":"first","affiliation":[{"name":"Graduate School of Information Science and Technology, Osaka University"}]},{"given":"Ittetsu","family":"TANIGUCHI","sequence":"additional","affiliation":[{"name":"Graduate School of Information Science and Technology, Osaka University"}]},{"given":"Francky","family":"CATTHOOR","sequence":"additional","affiliation":[{"name":"Electrical Engineering Department, Katholieke Universiteit Leuven"},{"name":"IMEC"}]},{"given":"Charalampos","family":"MARANTOS","sequence":"additional","affiliation":[{"name":"School of Electrical and Computer Engineering, National Technical University of Athens"}]},{"given":"Kostas","family":"SIOZIOS","sequence":"additional","affiliation":[{"name":"Department of Physics, Aristotle University of Thessaloniki"}]},{"given":"Elham","family":"SHIRAZI","sequence":"additional","affiliation":[{"name":"Electrical Engineering Department, Katholieke Universiteit Leuven"},{"name":"IMEC"}]},{"given":"Dimitrios","family":"SOUDRIS","sequence":"additional","affiliation":[{"name":"School of Electrical and Computer Engineering, National Technical University of Athens"}]},{"given":"Takao","family":"ONOYE","sequence":"additional","affiliation":[{"name":"Graduate School of Information Science and Technology, Osaka University"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"publisher","unstructured":"[1] C. Chen, S. Duan, T. Cai, B. Liu, and G. Hu, \u201cSmart energy management system for optimal microgrid economic operation,\u201d IET Renew. Power Gener., vol.5, no.3, pp.258-267, May 2011. 10.1049\/iet-rpg.2010.0052","DOI":"10.1049\/iet-rpg.2010.0052"},{"key":"2","doi-asserted-by":"crossref","unstructured":"[2] G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, and A. Bemporad, \u201cModel predictive control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities,\u201d Energies, vol.11, no.3, 631, 2018. 10.3390\/en11030631","DOI":"10.3390\/en11030631"},{"key":"3","doi-asserted-by":"publisher","unstructured":"[3] F.A. Qayyum, M. Naeem, A.S. Khwaja, A. Anpalagan, L. Guan, and B. Venkatesh, \u201cAppliance scheduling optimization in smart home networks,\u201d IEEE Access, vol.3, pp.2176-2190, Oct. 2015. 10.1109\/access.2015.2496117","DOI":"10.1109\/ACCESS.2015.2496117"},{"key":"4","doi-asserted-by":"publisher","unstructured":"[4] T. Terlouw, T. AlSkaif, C. Bauer, and W. van Sark, \u201cOptimal energy management in all-electric residential energy systems with heat and electricity storage,\u201d Appl. Energy, vol.254, p.113580, Nov. 2019. 10.1016\/j.apenergy.2019.113580","DOI":"10.1016\/j.apenergy.2019.113580"},{"key":"5","doi-asserted-by":"publisher","unstructured":"[5] A.C. Duman, H.S. Erden, \u00d6. G\u00f6n\u00fcl, and \u00d6. G\u00fcler, \u201cA home energy management system with an integrated smart thermostat for demand response in smart grids,\u201d Sustain. Cities Soc., vol.65, p.102639, Feb. 2021. 10.1016\/j.scs.2020.102639","DOI":"10.1016\/j.scs.2020.102639"},{"key":"6","doi-asserted-by":"publisher","unstructured":"[6] A. Abreu, R. Bourdais, and H. Gu\u00e9guen, \u201cHierarchical model predictive control for building energy management of hybrid systems,\u201d IFAC-PapersOnLine, vol.51, no.16, pp.235-240, Jan. 2018. 10.1016\/j.ifacol.2018.08.040","DOI":"10.1016\/j.ifacol.2018.08.040"},{"key":"7","doi-asserted-by":"publisher","unstructured":"[7] T. Cui, S. Chen, Y. Wang, Q. Zhu, S. Nazarian, and M. Pedram, \u201cAn optimal energy co-scheduling framework for smart buildings,\u201d Integr. VLSI J., vol.58, pp.528-537, June 2017. 10.1016\/j.vlsi.2016.10.009","DOI":"10.1016\/j.vlsi.2016.10.009"},{"key":"8","doi-asserted-by":"publisher","unstructured":"[8] K.X. Perez, M. Baldea, and T.F. Edgar, \u201cIntegrated HVAC management and optimal scheduling of smart appliances for community peak load reduction,\u201d Energy Build., vol.123, pp.34-40, July 2016. 10.1016\/j.enbuild.2016.04.003","DOI":"10.1016\/j.enbuild.2016.04.003"},{"key":"9","doi-asserted-by":"publisher","unstructured":"[9] M. Killian, M. Zauner, and M. Kozek, \u201cComprehensive smart home energy management system using mixed-integer quadratic-programming,\u201d Appl. Energy, vol.222, pp.662-672, July 2018. 10.1016\/j.apenergy.2018.03.179","DOI":"10.1016\/j.apenergy.2018.03.179"},{"key":"10","doi-asserted-by":"publisher","unstructured":"[10] D. Watari, I. Taniguchi, H. Goverde, P. Manganiello, E. Shirazi, F. Catthoor, and T. Onoye, \u201cMulti-time scale energy management framework for smart PV systems mixing fast and slow dynamics,\u201d Appl. Energy, vol.289, p.116671, May 2021. 10.1016\/j.apenergy.2021.116671","DOI":"10.1016\/j.apenergy.2021.116671"},{"key":"11","doi-asserted-by":"publisher","unstructured":"[11] Y. Li, D.M. Vilathgamuwa, and P.C. Loh, \u201cDesign, analysis, and real-time testing of a controller for multibus microgrid system,\u201d IEEE Trans. Power Electron., vol.19, no.5, pp.1195-1204, Sept. 2004. 10.1109\/tpel.2004.833456","DOI":"10.1109\/TPEL.2004.833456"},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] Y. Xu, J. Zhang, W. Wang, A. Juneja, and S. Bhattacharya, \u201cEnergy router: Architectures and functionalities toward energy internet,\u201d 2nd IEEE Int. Conf. Smart Grid Commun. (SmartGridComm'11), pp.31-36, Oct. 2011. 10.1109\/smartgridcomm.2011.6102340","DOI":"10.1109\/SmartGridComm.2011.6102340"},{"key":"13","doi-asserted-by":"publisher","unstructured":"[13] D. Anagnostos, T. Schmidt, S. Cavadias, D. Soudris, J. Poortmans, and F. Catthoor, \u201cA method for detailed, short-term energy yield forecasting of photovoltaic installations,\u201d Renew. Energy, vol.130, pp.122-129, Jan. 2019. 10.1016\/j.renene.2018.06.058","DOI":"10.1016\/j.renene.2018.06.058"},{"key":"14","unstructured":"[14] H. Goverde, D. Anagnostos, J. Govaerts, P. Manganiello, E. Voroshazi, K. Baert, J. Szlufcikl, F. Catthoor, J. Poortmans, and J. Driesen, \u201cAccurately simulating PV energy production: Exploring the impact of module Build-Up,\u201d 33rd Eur. PV Sol. Energy Conf. Exhib. (EUPVSEC'17), pp.1643-1646, Sept. 2017."},{"key":"15","doi-asserted-by":"publisher","unstructured":"[15] M. Chen and G.A. Rincon-Mora, \u201cAccurate electrical battery model capable of predicting runtime and I-V performance,\u201d IEEE Trans. Energy Convers., vol.21, no.2, pp.504-511, June 2006. 10.1109\/tec.2006.874229","DOI":"10.1109\/TEC.2006.874229"},{"key":"16","doi-asserted-by":"publisher","unstructured":"[16] N. Sadeghianpourhamami, T. Demeester, D.F. Benoit, M. Strobbe, and C. Develder, \u201cModeling and analysis of residential flexibility: Timing of white good usage,\u201d Appl. Energy, vol.179, pp.790-805, Oct. 2016. 10.1016\/j.apenergy.2016.07.012","DOI":"10.1016\/j.apenergy.2016.07.012"},{"key":"17","doi-asserted-by":"publisher","unstructured":"[17] F. Ferracuti, A. Fonti, L. Ciabattoni, S. Pizzuti, A. Arteconi, L. Helsen, and G. Comodi, \u201cData-driven models for short-term thermal behaviour prediction in real buildings,\u201d Appl. Energy, vol.204, pp.1375-1387, Oct. 2017. 10.1016\/j.apenergy.2017.05.015","DOI":"10.1016\/j.apenergy.2017.05.015"},{"key":"18","unstructured":"[18] P.O. Fanger, Thermal Comfort. Analysis and Applications in Environmental Engineering, Danish Technical Press., Copenhagen, 1970."},{"key":"19","doi-asserted-by":"publisher","unstructured":"[19] C. Marantos, K. Siozios, and D. Soudris, \u201cRapid prototyping of Low-Complexity orchestrator targeting CyberPhysical systems: The Smart-Thermostat usecase,\u201d IEEE Trans. Control Syst. Technol., vol.28, no.5, pp.1831-1845, Sept. 2020. 10.1109\/tcst.2019.2922314","DOI":"10.1109\/TCST.2019.2922314"},{"key":"20","unstructured":"[20] ASHRAE, ANSI\/ASHRAE Standard 55-2013: Thermal Environmental Conditions for Human Occupancy, ASHRAE, Atlanta, 2013."},{"key":"21","doi-asserted-by":"publisher","unstructured":"[21] A. Parisio, E. Rikos, and L. Glielmo, \u201cA model predictive control approach to microgrid operation optimization,\u201d IEEE Trans. Control Syst. Technol., vol.22, no.5, pp.1813-1827, Sept. 2014. 10.1109\/tcst.2013.2295737","DOI":"10.1109\/TCST.2013.2295737"},{"key":"22","unstructured":"[22] O. Grodzevich and O. Romanko, \u201cNormalization and other topics in Multi-Objective optimization,\u201d Proc. Fields MITACS Ind. Prob. Workshop (FMIPW'06), pp.89-101, Aug. 2006."},{"key":"23","unstructured":"[23] ComEd, \u201cLive prices,\u201d https:\/\/hourlypricing.comed.com\/live-prices\/, Accessed: 2022-3-30."},{"key":"24","doi-asserted-by":"crossref","unstructured":"[24] A.S.N. Uttama Nambi, A. Reyes Lua, and V.R. Prasad, \u201cLocED: Location-aware energy disaggregation framework,\u201d Proc. 2nd ACM Int. Conf. Embed. Syst. Energy-Effic. Built Environ. (Buildsys'15), pp.45-54, Nov. 2015. 10.1145\/2821650.2821659","DOI":"10.1145\/2821650.2821659"},{"key":"25","doi-asserted-by":"publisher","unstructured":"[25] J. Langevin, P.L. Gurian, and J. Wen, \u201cTracking the human-building interaction: A longitudinal field study of occupant behavior in air-conditioned offices,\u201d J. Environ. Psychol., vol.42, pp.94-115, June 2015. 10.1016\/j.jenvp.2015.01.007","DOI":"10.1016\/j.jenvp.2015.01.007"},{"key":"26","doi-asserted-by":"publisher","unstructured":"[26] M. Wallace, R. McBride, S. Aumi, P. Mhaskar, J. House, and T. Salsbury, \u201cEnergy efficient model predictive building temperature control,\u201d Chem. Eng. Sci., vol.69, no.1, pp.45-58, Feb. 2012. 10.1016\/j.ces.2011.07.023","DOI":"10.1016\/j.ces.2011.07.023"}],"container-title":["IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E106.A\/5\/E106.A_2022MAI0001\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T05:09:43Z","timestamp":1715317783000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E106.A\/5\/E106.A_2022MAI0001\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,1]]},"references-count":26,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2023]]}},"URL":"https:\/\/doi.org\/10.1587\/transfun.2022mai0001","relation":{},"ISSN":["0916-8508","1745-1337"],"issn-type":[{"value":"0916-8508","type":"print"},{"value":"1745-1337","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,5,1]]},"article-number":"2022MAI0001"}}