{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T03:10:04Z","timestamp":1723173004311},"reference-count":33,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"7","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Fundamentals"],"published-print":{"date-parts":[[2020,7,1]]},"DOI":"10.1587\/transfun.2019eap1075","type":"journal-article","created":{"date-parts":[[2020,6,30]],"date-time":"2020-06-30T18:10:35Z","timestamp":1593540635000},"page":"917-927","source":"Crossref","is-referenced-by-count":0,"title":["A Node-Grouping Based Spatial Spectrum Reuse Method for WLANs in Dense Residential Scenarios"],"prefix":"10.1587","volume":"E103.A","author":[{"given":"Jin","family":"LIU","sequence":"first","affiliation":[{"name":"Graduate School of Information Science and Technology, Osaka University"}]},{"given":"Masahide","family":"HATANAKA","sequence":"additional","affiliation":[{"name":"Graduate School of Information Science and Technology, Osaka University"}]},{"given":"Takao","family":"ONOYE","sequence":"additional","affiliation":[{"name":"Graduate School of Information Science and Technology, Osaka University"}]}],"member":"532","reference":[{"key":"1","unstructured":"[1] Cisco, Inc., Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021 White Paper, 2017."},{"key":"2","doi-asserted-by":"publisher","unstructured":"[2] J. Choi and K.G. Shin, \u201cQoS provisioning for large-scale multi-AP WLANs,\u201d Ad Hoc Networks, vol.10, no.2, pp.174-185, 2012. 10.1016\/j.adhoc.2010.07.009","DOI":"10.1016\/j.adhoc.2010.07.009"},{"key":"3","doi-asserted-by":"publisher","unstructured":"[3] A. Baid and D. Raychaudhuri, \u201cUnderstanding channel selection dynamics in dense Wi-Fi networks,\u201d IEEE Commun. Mag., vol.53, no.1, pp.110-117, 2015. 10.1109\/mcom.2015.7010523","DOI":"10.1109\/MCOM.2015.7010523"},{"key":"4","doi-asserted-by":"publisher","unstructured":"[4] P.B. Oni and S.D. Blostein, \u201cPCS threshold selection for spatial reuse in high density CSMA\/CA MIMO wireless networks,\u201d IEEE Access, vol.7, pp.112470-112482, 2019. 10.1109\/access.2019.2934751","DOI":"10.1109\/ACCESS.2019.2934751"},{"key":"5","doi-asserted-by":"publisher","unstructured":"[5] M.S. Afaqui, E. Garcia-Villegas, and E. Lopez-Aguilera, \u201cIEEE 802.11ax: Challenges and requirements for future high efficiency WiFi,\u201d IEEE Wireless Commun., vol.24, no.3, pp.130-137, 2017. 10.1109\/mwc.2016.1600089wc","DOI":"10.1109\/MWC.2016.1600089WC"},{"key":"6","doi-asserted-by":"publisher","unstructured":"[6] H.A. Omar, K. Abboud, N. Cheng, K.R. Malekshan, A.T. Gamage, and W. Zhuang, \u201cA survey on high efficiency wireless local area networks: Next generation WiFi,\u201d IEEE Commun. Surveys Tuts., vol.18, no.4, pp.2315-2344, 2016. 10.1109\/comst.2016.2554098","DOI":"10.1109\/COMST.2016.2554098"},{"key":"7","unstructured":"[7] IEEE 802.11-15\/0025r0, \u201cDynamic sensitivity control roaming,\u201d 2015."},{"key":"8","unstructured":"[8] IEEE 802.11-13\/1012r4, \u201cDynamic sensitivity control V2,\u201d 2013."},{"key":"9","doi-asserted-by":"publisher","unstructured":"[9] K. Shin, I. Park, J. Hong, D. Har, and D. Cho, \u201cPer-node throughput enhancement in Wi-Fi densenets,\u201d IEEE Commun. Mag., vol.53, no.1, pp.118-125, 2015. 10.1109\/mcom.2015.7010524","DOI":"10.1109\/MCOM.2015.7010524"},{"key":"10","doi-asserted-by":"crossref","unstructured":"[10] I. Selinis, M. Filo, S. Vahid, J. Rodriguez, and R. Tafazolli, \u201cEvaluation of the DSC algorithm and the BSS color scheme in dense cellular-like IEEE 802.11ax deployments,\u201d 27th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp.1-7, 2016. 10.1109\/pimrc.2016.7794832","DOI":"10.1109\/PIMRC.2016.7794832"},{"key":"11","unstructured":"[11] IEEE 802.11-18\/1531r3, \u201cTG ax spatial reuse DSC and TPC,\u201d 2018."},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] M.S. Afaqui, E. Garcia-Villegas, E. Lopez-Aguilera, and D. Camps-Mur, \u201cDynamic sensitivity control of access points for IEEE 802.11ax,\u201d IEEE International Conference on Communications (ICC), pp.1-7, 2016. 10.1109\/icc.2016.7511025","DOI":"10.1109\/ICC.2016.7511025"},{"key":"13","doi-asserted-by":"crossref","unstructured":"[13] T. Ropitault, \u201cEvaluation of RTOT algorithm: A first implementation of OBSS_PD-based SR method for IEEE 802.11ax,\u201d 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp.1-7, 2018. 10.1109\/ccnc.2018.8319274","DOI":"10.1109\/CCNC.2018.8319274"},{"key":"14","doi-asserted-by":"crossref","unstructured":"[14] I. Jamil, L. Cariou, and J.F. H\u00e9lard, \u201cEfficient MAC protocols optimization for future high density WLANs,\u201d IEEE Wireless Communications and Networking Conference (WCNC), pp.1054-1059, 2015. 10.1109\/wcnc.2015.7127615","DOI":"10.1109\/WCNC.2015.7127615"},{"key":"15","doi-asserted-by":"crossref","unstructured":"[15] M.S. Afaqui, E. Garcia-Villegas, E. Lopez-Aguilera, G. Smith, and D. Camps, \u201cEvaluation of dynamic sensitivity control algorithm for IEEE 802.11ax,\u201d IEEE Wireless Communications and Networking Conference (WCNC), pp.1060-1065, 2015. 10.1109\/wcnc.2015.7127616","DOI":"10.1109\/WCNC.2015.7127616"},{"key":"16","doi-asserted-by":"crossref","unstructured":"[16] S. Tayamon, G. Wikstr\u00f6m, K.P. Moreno, J. S\u00f6der, Y. Wang, and F. Mestanov, \u201cAnalysis of the potential for increased spectral reuse in wireless LAN,\u201d 26th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp.1963-1967, 2015. 10.1109\/pimrc.2015.7343620","DOI":"10.1109\/PIMRC.2015.7343620"},{"key":"17","unstructured":"[17] Z. Zhong, F. Cao, P. Kulkarni, and Z. Fan, \u201cPromise and perils of dynamic sensitivity control in IEEE 802.11ax WLANs,\u201d IEEE International Symposium on Wireless Communication Systems (ISWCS), pp.439-444, 2016. 10.1109\/iswcs.2016.7600944"},{"key":"18","unstructured":"[18] IEEE 802.11-16\/0604r1, \u201cSimulation-based evaluation of DSC in enterprise scenario,\u201d 2016."},{"key":"19","unstructured":"[19] IEEE 802.11-14\/0980r16, \u201cTGax simulation scenarios,\u201d 2015."},{"key":"20","doi-asserted-by":"publisher","unstructured":"[20] I. Shitara, T. Hiraguri, K. Yano, N. Egashira, and T. Kumagai, \u201cA study on transmission power control for wireless LAN under overlapping BSS environment,\u201d IEICE Communications Express, vol.7, no.8, pp.303-308, 2018. 10.1587\/comex.2018xbl0063","DOI":"10.1587\/comex.2018XBL0063"},{"key":"21","doi-asserted-by":"publisher","unstructured":"[21] Y. Gao, L. Dai, and X. Hei, \u201cThroughput optimization of multi-BSS IEEE 802.11 networks with universal frequency reuse,\u201d IEEE Trans. Commun., vol.65, no.8, pp.3399-3414, 2017. 10.1109\/tcomm.2017.2706280","DOI":"10.1109\/TCOMM.2017.2706280"},{"key":"22","doi-asserted-by":"crossref","unstructured":"[22] Z. Lv, H. Hu, D. Yuan, and J. Ran, \u201cAn adaptive rate and carrier sense threshold algorithm to enhance throughput and fairness for dense WLANs,\u201d 3rd IEEE International Conference on Computer and Communications (ICCC), pp.453-458, 2017. 10.1109\/compcomm.2017.8322588","DOI":"10.1109\/CompComm.2017.8322588"},{"key":"23","unstructured":"[23] Cisco Systems, Inc., Cisco Wireless Mesh Access Points, Design and Deployment Guide, Release 8.1-8.3, 2015."},{"key":"24","doi-asserted-by":"publisher","unstructured":"[24] J. Mvulla and E. Park, \u201cEnhanced dual carrier sensing with transmission time control for fair spatial reuse in heterogeneous and dense WLANs,\u201d IEEE Access, vol.6, pp.22140-22155, 2018. 10.1109\/access.2018.2828020","DOI":"10.1109\/ACCESS.2018.2828020"},{"key":"25","doi-asserted-by":"publisher","unstructured":"[25] F. Siddiqui, S. Zeadally, and K. Salah, \u201cGigabit wireless networking with IEEE 802.11ac: Technical overview and challenges,\u201d J. Networks, vol.10, no.3, p.164, 2015. 10.4304\/jnw.10.3.164-171","DOI":"10.4304\/jnw.10.3.164-171"},{"key":"26","doi-asserted-by":"crossref","unstructured":"[26] H. Labiod, A. Hossam, and C.D. Santis, Wi-Fi, Bluetooth, Zigbee and WiMAX, Springer-Verlag, 2007. 10.1007\/978-1-4020-5397-9","DOI":"10.1007\/978-1-4020-5397-9"},{"key":"27","unstructured":"[27] ITU-R, Propagation Data and Prediction Methods for the Planning of Indoor Radiocommunication Systems and Radio Local Area Networks in the Frequency Range 300MHz to 100GHz, 9th ed., p.1238, 2017."},{"key":"28","doi-asserted-by":"crossref","unstructured":"[28] P. Stuedi, O. Chinellato, and G. Alonso, \u201cConnectivity in the presence of shadowing in 802.11 ad hoc networks,\u201d IEEE Wireless Communications and Networking Conference (WCNC), pp.2225-2230, 2005. 10.1109\/wcnc.2005.1424862","DOI":"10.1109\/WCNC.2005.1424862"},{"key":"29","unstructured":"[29] NS-3, \u201cThe network simulator ns-3,\u201d 2017."},{"key":"30","unstructured":"[30] R. Jain, D. Chiu, and W.R. Hawe, A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer System, Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA, 1984."},{"key":"31","unstructured":"[31] IEEE 802.11-14\/0882r4, \u201cIEEE 802.11ax channel model document,\u201d 2014."},{"key":"32","doi-asserted-by":"publisher","unstructured":"[32] O.W. Ata, \u201cIn building penetration loss in office and residential building structures in palestine at GSM 900MHz frequency,\u201d Wireless Pers. Commun., vol.70, no.1, pp.1-14, 2013. 10.1007\/s11277-012-0675-6","DOI":"10.1007\/s11277-012-0675-6"},{"key":"33","doi-asserted-by":"crossref","unstructured":"[33] E. Haghani, M.N. Krishnan, and A. Zakhor, \u201cAdaptive carrier-sensing for throughput improvement in IEEE 802.11 networks,\u201d IEEE Global Telecommunications Conference (GLOBECOM), pp.1-6, 2010. 10.1109\/glocom.2010.5683231","DOI":"10.1109\/GLOCOM.2010.5683231"}],"container-title":["IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E103.A\/7\/E103.A_2019EAP1075\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T19:05:50Z","timestamp":1723143950000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transfun\/E103.A\/7\/E103.A_2019EAP1075\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7,1]]},"references-count":33,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2020]]}},"URL":"https:\/\/doi.org\/10.1587\/transfun.2019eap1075","relation":{},"ISSN":["0916-8508","1745-1337"],"issn-type":[{"type":"print","value":"0916-8508"},{"type":"electronic","value":"1745-1337"}],"subject":[],"published":{"date-parts":[[2020,7,1]]}}}