{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,26]],"date-time":"2024-04-26T23:38:24Z","timestamp":1714174704405},"reference-count":12,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"3","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Electron. Express"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1587\/elex.16.20181034","type":"journal-article","created":{"date-parts":[[2019,1,17]],"date-time":"2019-01-17T22:31:34Z","timestamp":1547764294000},"page":"20181034-20181034","source":"Crossref","is-referenced-by-count":10,"title":["A memristor-based convolutional neural network with full parallelization architecture"],"prefix":"10.1587","volume":"16","author":[{"given":"Sheng-Yang","family":"Sun","sequence":"first","affiliation":[{"name":"College of Electronic Science, National University of Defense Technology"}]},{"given":"Zhiwei","family":"Li","sequence":"additional","affiliation":[{"name":"College of Electronic Science, National University of Defense Technology"}]},{"given":"Jiwei","family":"Li","sequence":"additional","affiliation":[{"name":"College of Electronic Science, National University of Defense Technology"}]},{"given":"Husheng","family":"Liu","sequence":"additional","affiliation":[{"name":"College of Electronic Science, National University of Defense Technology"}]},{"given":"Haijun","family":"Liu","sequence":"additional","affiliation":[{"name":"College of Electronic Science, National University of Defense Technology"}]},{"given":"Qingjiang","family":"Li","sequence":"additional","affiliation":[{"name":"College of Electronic Science, National University of Defense Technology"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"publisher","unstructured":"[1] B. Belhadj, et al.<\/i>: \u201cContinuous real-world inputs can open up alternative accelerator designs,\u201d ACM SIGARCH Comput. Archit. News 41<\/b> (2013) 1 (DOI: 10.1145\/2508148.2485923).","DOI":"10.1145\/2508148.2485923"},{"key":"2","doi-asserted-by":"crossref","unstructured":"[2] A. Ankit, et al.<\/i>: \u201cTraNNsformer: Neural network transformation for memristive crossbar based neuromorphic system design,\u201d Proc. 36th International Conference on Computer-Aided Design (2017) 533 (DOI: 10.1109\/ICCAD.2017.8203823).","DOI":"10.1109\/ICCAD.2017.8203823"},{"key":"3","unstructured":"[3] T. Iakymchuk, et al.<\/i>: \u201cSimplified spiking neural network architecture and STDP learning algorithm applied to image classification,\u201d EURASIP J. Image Video Process. 2015<\/b> (2015) 1 (DOI: 10.1186\/s13640-015-0059-4)."},{"key":"4","doi-asserted-by":"publisher","unstructured":"[4] L. O. Chua: \u201cMemristorthe missing circuit element,\u201d IEEE Trans. Circuit Theory 18<\/b> (1971) 507 (DOI: 10.1109\/TCT.1971.1083337).","DOI":"10.1109\/TCT.1971.1083337"},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] M. Hu, et al.<\/i>: \u201cDot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication,\u201d Proc. DAC 53<\/b> (2016) (DOI: 10.1145\/2897937.2898010).","DOI":"10.1145\/2897937.2898010"},{"key":"6","doi-asserted-by":"publisher","unstructured":"[6] Y. LeCun, et al.<\/i>: \u201cGradient-based learning applied to document recognition,\u201d Proc. IEEE 86<\/b> (1998) 2278 (DOI: 10.1109\/5.726791).","DOI":"10.1109\/5.726791"},{"key":"7","unstructured":"[7] G. Lacey, et al.<\/i>: \u201cDeep learning on fpgas: Past, present, and future,\u201d arXiv (2016) https:\/\/arxiv.org\/abs\/1602.04283v1."},{"key":"8","doi-asserted-by":"publisher","unstructured":"[8] J.-Y. Zhang, et al.<\/i>: \u201cDesign of low-offset low-power CMOS amplifier for biosensor application,\u201d J. Biomed. Sci. Eng. 2<\/b> (2009) 538 (DOI: 10.4236\/jbise.2009.27078).","DOI":"10.4236\/jbise.2009.27078"},{"key":"9","doi-asserted-by":"publisher","unstructured":"[9] B. Menbari, et al.<\/i>: \u201cA wide range monolithic pHEMT SPDT switch,\u201d Microw. Opt. Technol. Lett. 56<\/b> (2014) 1454 (DOI: 10.1002\/mop.28338).","DOI":"10.1002\/mop.28338"},{"key":"10","doi-asserted-by":"publisher","unstructured":"[10] F. Alibart, et al.<\/i>: \u201cHigh precision tuning of state for memristive devices by adaptable variation-tolerant algorithm,\u201d Nanotechnology 23<\/b> (2012) 075201 (DOI: 10.1088\/0957-4484\/23\/7\/075201).","DOI":"10.1088\/0957-4484\/23\/7\/075201"},{"key":"11","doi-asserted-by":"crossref","unstructured":"[11] C. Yakopcic, et al.<\/i>: \u201cExtremely parallel memristor crossbar architecture for convolutional neural network implementation,\u201d International Joint Conference on Neural Networks (2017) 1696 (DOI: 10.1109\/IJCNN.2017.7966055).","DOI":"10.1109\/IJCNN.2017.7966055"},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] C. Yakopcic, et al.<\/i>: \u201cMemristor crossbar deep network implementation based on a convolutional neural network,\u201d International Joint Conference on Neural Networks (2016) 963 (DOI: 10.1109\/IJCNN.2016.7727302).","DOI":"10.1109\/IJCNN.2016.7727302"}],"container-title":["IEICE Electronics Express"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/elex\/16\/3\/16_16.20181034\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,2,16]],"date-time":"2019-02-16T04:17:40Z","timestamp":1550290660000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/elex\/16\/3\/16_16.20181034\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":12,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2019]]}},"URL":"https:\/\/doi.org\/10.1587\/elex.16.20181034","relation":{},"ISSN":["1349-2543"],"issn-type":[{"value":"1349-2543","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019]]}}}