{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T06:40:29Z","timestamp":1680331229529},"reference-count":62,"publisher":"Walter de Gruyter GmbH","issue":"3","license":[{"start":{"date-parts":[[2018,9,1]],"date-time":"2018-09-01T00:00:00Z","timestamp":1535760000000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,9,25]]},"abstract":"Abstract<\/jats:title>\n In this work we present new concepts of VANESA, a tool for modeling and simulation in systems biology. We provide a convenient way to handle mathematical expressions and take physical units into account. Simulation and result management has been improved, and syntax and consistency checks, based on physical units, reduce modeling errors. As a proof of concept, essential components of the aerobic carbon metabolism of the green microalga Chlamydomonas reinhardtii<\/jats:italic> are modeled and simulated. The modeling process is based on xHPN Petri net formalism and simulation is performed with OpenModelica, a powerful environment and compiler for Modelica. VANESA, as well as OpenModelica, is open source, free-of-charge for non-commercial use, and is available at: http:\/\/agbi.techfak.uni-bielefeld.de\/vanesa<\/jats:ext-link>.<\/jats:p>","DOI":"10.1515\/jib-2018-0018","type":"journal-article","created":{"date-parts":[[2018,9,16]],"date-time":"2018-09-16T00:55:19Z","timestamp":1537059319000},"source":"Crossref","is-referenced-by-count":3,"title":["Modeling and Simulating the Aerobic Carbon Metabolism of a Green Microalga Using Petri Nets and New Concepts of VANESA"],"prefix":"10.1515","volume":"15","author":[{"given":"Christoph","family":"Brinkrolf","sequence":"first","affiliation":[{"name":"Bielefeld University , Faculty of Technology, Bioinformatics Department , Bielefeld , Germany"}]},{"given":"Nadja A.","family":"Henke","sequence":"additional","affiliation":[{"name":"Bielefeld University , Faculty of Biology and CeBiTec, Genetics of Prokaryotes , Bielefeld , Germany"}]},{"given":"Lennart","family":"Ochel","sequence":"additional","affiliation":[{"name":"Bielefeld University , Faculty of Technology, Bioinformatics Department , Bielefeld , Germany"},{"name":"Link\u00f6ping University , Department of Computer and Information Science , Link\u00f6ping , Sweden"}]},{"given":"Boas","family":"Pucker","sequence":"additional","affiliation":[{"name":"Bielefeld University , Faculty of Biology and CeBiTec, Genome Research , Bielefeld , Germany"},{"name":"University of Cambridge , Department of PlantSciences, Evolution and Diversity , Cambridge , UK"}]},{"given":"Olaf","family":"Kruse","sequence":"additional","affiliation":[{"name":"Bielefeld University , Faculty of Biology and CeBiTec, Algae Biotechnology and Bioenergy , Bielefeld , Germany"}]},{"given":"Petra","family":"Lutter","sequence":"additional","affiliation":[{"name":"Bielefeld University , Faculty of Biology and CeBiTec, Proteome and Metabolome Research , Bielefeld , Germany"}]}],"member":"374","published-online":{"date-parts":[[2018,9,15]]},"reference":[{"key":"2023033119204010295_j_jib-2018-0018_ref_001_w2aab3b7b5b1b6b1ab1b6b1Aa","unstructured":"Reisig W. Petri nets: an introduction. Vol. 4 of EATCS Monographs on Theoretical Computer Science. Germany: Springer-Verlag Berlin Heidelberg; 1985."},{"key":"2023033119204010295_j_jib-2018-0018_ref_002_w2aab3b7b5b1b6b1ab1b6b2Aa","doi-asserted-by":"crossref","unstructured":"David R, Alla H. Discrete, Continuous, and hybrid petri nets, 2nd ed. Germany: Springer-Verlag Berlin Heidelberg; 2010.","DOI":"10.1007\/978-3-642-10669-9"},{"key":"2023033119204010295_j_jib-2018-0018_ref_003_w2aab3b7b5b1b6b1ab1b6b3Aa","unstructured":"Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S. Biopathways representation and simulation on hybrid functional Petri net. In Silico Biology. 2003;3:389\u2013404.12954096"},{"key":"2023033119204010295_j_jib-2018-0018_ref_004_w2aab3b7b5b1b6b1ab1b6b4Aa","doi-asserted-by":"crossref","unstructured":"Nagasaki M, Saito A, Jeong E, Li C, Kojima K, Ikeda E, et al. Cell Illustrator 4.0: a computational platform for systems biology. In Silico Biology. 2010;10:5\u201326.22430219","DOI":"10.3233\/ISB-2010-0415"},{"key":"2023033119204010295_j_jib-2018-0018_ref_005_w2aab3b7b5b1b6b1ab1b6b5Aa","doi-asserted-by":"crossref","unstructured":"Heiner M, Herajy M, Liu F, Rohr C, Schwarick M. Snoopy \u2013 a unifying petri net tool. In: Haddad S, Pomello L, editors. Application and Theory of Petri Nets. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 398\u2013407.","DOI":"10.1007\/978-3-642-31131-4_22"},{"key":"2023033119204010295_j_jib-2018-0018_ref_006_w2aab3b7b5b1b6b1ab1b6b6Aa","doi-asserted-by":"crossref","unstructured":"Pro\u00df S, Bachmann B. PNlib \u2013 an advanced Petri net library for hybrid process modeling. In: Otter M, Zimmer D, editors. Proceedings of the 9th International Modelica Conference. : Link\u00f6ping University Electronic Press; 2012. p. 47\u201356.","DOI":"10.3384\/ecp1207647"},{"key":"2023033119204010295_j_jib-2018-0018_ref_007_w2aab3b7b5b1b6b1ab1b6b7Aa","doi-asserted-by":"crossref","unstructured":"Goss PJE, Peccoud J. Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci U S A. 1998;95:6750\u20135.961848410.1073\/pnas.95.12.6750","DOI":"10.1073\/pnas.95.12.6750"},{"key":"2023033119204010295_j_jib-2018-0018_ref_008_w2aab3b7b5b1b6b1ab1b6b8Aa","unstructured":"Pro\u00df S, Janowski SJ, Bachmann B, Kaltschmidt C, Kaltschmidt B. PNlib \u2013 A modelica library for simulation of biological systems based on extended hybrid petri nets. In: Heiner Monika, Hofest\u00e4dt Ralf, editor(s). Proceedings of the 3rd International Workshop on Biological Processes & Petri Nets (BioPPN 2012), satellite event of Petri Nets 2012, Hamburg, Germany, June 25, 2012CEUR Workshop, Proceedings Vol. 852. Hamburg, Germany: CEUR-WS.org, 2012:47\u201361."},{"key":"2023033119204010295_j_jib-2018-0018_ref_009_w2aab3b7b5b1b6b1ab1b6b9Aa","unstructured":"Pro\u00df S. Hybrid modeling and optimization of biological processes. Germany: Bielefeld University; 2013."},{"key":"2023033119204010295_j_jib-2018-0018_ref_010_w2aab3b7b5b1b6b1ab1b6c10Aa","unstructured":"Modelica Association. Modelica webpage. Available from: https:\/\/www.modelica.org\/. Accessed on 28 August, 2018."},{"key":"2023033119204010295_j_jib-2018-0018_ref_011_w2aab3b7b5b1b6b1ab1b6c11Aa","unstructured":". Modelica Association. Modelica Tools webpage Available from: https:\/\/www.modelica.org\/tools\/. Accessed on 28 August, 2018."},{"key":"2023033119204010295_j_jib-2018-0018_ref_012_w2aab3b7b5b1b6b1ab1b6c12Aa","doi-asserted-by":"crossref","unstructured":"Brinkrolf C, Janowski SJ, Kormeier B, Lewinski M, Hippe K, Borck D, et al. VANESA \u2013 a software application for the visualization and analysis of networks in system biology applications. J Integr Bioinform. 2014;11:239.24953454","DOI":"10.1515\/jib-2014-239"},{"key":"2023033119204010295_j_jib-2018-0018_ref_013_w2aab3b7b5b1b6b1ab1b6c13Aa","unstructured":"Hippe K, Kormeier B, T\u00f6pel T, Janowski S, Hofest\u00e4dt R. DAWIS-M.D. \u2013 a data warehouse system for metabolic data. In: F\u00e4hnrich KP, Franczyk B, editors. Informatik 2010: Service Science \u2013 Neue Perspektiven f\u00fcr die Informatik, Beitr\u00e4ge der 40. Jahrestagung der Gesellschaft f\u00fcr Informatik e.V. (GI), Band 2, 27.09. \u2013 1.10.2010, Leipzig, Deutschland. Vol. 175 of LNI. GI; 2010. p. 720\u20135."},{"key":"2023033119204010295_j_jib-2018-0018_ref_014_w2aab3b7b5b1b6b1ab1b6c14Aa","doi-asserted-by":"crossref","unstructured":"Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:109\u201314.10.1093\/nar\/gkr988","DOI":"10.1093\/nar\/gkr988"},{"key":"2023033119204010295_j_jib-2018-0018_ref_015_w2aab3b7b5b1b6b1ab1b6c15Aa","doi-asserted-by":"crossref","unstructured":"Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, et al. BRENDA, the enzyme information system in 2011. Nucleic Acids Res. 2011;39:670\u20136.10.1093\/nar\/gkq1089","DOI":"10.1093\/nar\/gkq1089"},{"key":"2023033119204010295_j_jib-2018-0018_ref_016_w2aab3b7b5b1b6b1ab1b6c16Aa","doi-asserted-by":"crossref","unstructured":"Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2012;40:841\u20136.10.1093\/nar\/gkr1088","DOI":"10.1093\/nar\/gkr1088"},{"key":"2023033119204010295_j_jib-2018-0018_ref_017_w2aab3b7b5b1b6b1ab1b6c17Aa","doi-asserted-by":"crossref","unstructured":"Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40:857\u201361.10.1093\/nar\/gkr930","DOI":"10.1093\/nar\/gkr930"},{"key":"2023033119204010295_j_jib-2018-0018_ref_018_w2aab3b7b5b1b6b1ab1b6c18Aa","doi-asserted-by":"crossref","unstructured":"Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference database \u2013 2009 update. Nucleic Acids Res. 2009;37:767\u201372.10.1093\/nar\/gkn892","DOI":"10.1093\/nar\/gkn892"},{"key":"2023033119204010295_j_jib-2018-0018_ref_019_w2aab3b7b5b1b6b1ab1b6c19Aa","unstructured":"Fritzson P, Aronsson P, Lundvall H, Nystr\u00f6m K, Pop A, Saldamli L. The openmodelica modeling, simulation, and software development environment. Simulation News Europe. 2005;44:8\u201316."},{"key":"2023033119204010295_j_jib-2018-0018_ref_020_w2aab3b7b5b1b6b1ab1b6c20Aa","doi-asserted-by":"crossref","unstructured":"Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green AlgaChlamydomonas reinhardtii. Plant Physiol. 2000;122:127\u201336.10.1104\/pp.122.1.127","DOI":"10.1104\/pp.122.1.127"},{"key":"2023033119204010295_j_jib-2018-0018_ref_021_w2aab3b7b5b1b6b1ab1b6c21Aa","doi-asserted-by":"crossref","unstructured":"Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology \u00e2\u20ac Improving cell factory performance. Metab Eng. 2014;24:38\u201360.2474704510.1016\/j.ymben.2014.03.007","DOI":"10.1016\/j.ymben.2014.03.007"},{"key":"2023033119204010295_j_jib-2018-0018_ref_022_w2aab3b7b5b1b6b1ab1b6c22Aa","doi-asserted-by":"crossref","unstructured":"Nozzi NE, Desai SH, Case AE, Atsumi S. Metabolic engineering for higher alcohol production. Metab Eng. 2014;25:174\u201382.10.1016\/j.ymben.2014.07.00725080238","DOI":"10.1016\/j.ymben.2014.07.007"},{"key":"2023033119204010295_j_jib-2018-0018_ref_023_w2aab3b7b5b1b6b1ab1b6c23Aa","doi-asserted-by":"crossref","unstructured":"Oliver NJ, Rabinovitch-Deere CA, Carroll AL, Nozzi NE, Case AE, Atsumi S. Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol. 2016;35:43\u201350. Energy Mechanistic Biology.2761417310.1016\/j.cbpa.2016.08.023","DOI":"10.1016\/j.cbpa.2016.08.023"},{"key":"2023033119204010295_j_jib-2018-0018_ref_024_w2aab3b7b5b1b6b1ab1b6c24Aa","doi-asserted-by":"crossref","unstructured":"Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, et al. Improved photobiological H2 production in engineered green algal cells. J Biol Chem. 2005;280:34170\u20137.1610011810.1074\/jbc.M503840200","DOI":"10.1074\/jbc.M503840200"},{"key":"2023033119204010295_j_jib-2018-0018_ref_025_w2aab3b7b5b1b6b1ab1b6c25Aa","doi-asserted-by":"crossref","unstructured":"Wendisch VF, Jorge JMP, P\u00e9rez-Garc\u00eda F, Sgobba E. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol. 2016;32:105.10.1007\/s11274-016-2060-127116971","DOI":"10.1007\/s11274-016-2060-1"},{"key":"2023033119204010295_j_jib-2018-0018_ref_026_w2aab3b7b5b1b6b1ab1b6c26Aa","doi-asserted-by":"crossref","unstructured":"Herajy M, Heiner M. Hybrid representation and simulation of stiff biochemical networks. Nonlinear Anal-Hybri. 2012;6:942\u201359.10.1016\/j.nahs.2012.05.004","DOI":"10.1016\/j.nahs.2012.05.004"},{"key":"2023033119204010295_j_jib-2018-0018_ref_027_w2aab3b7b5b1b6b1ab1b6c27Aa","doi-asserted-by":"crossref","unstructured":"Herajy M, Heiner M. Adaptive and bio-semantics of continuous petri nets: choosing the appropriate interpretation. Fundam Inform. 2018;160:53\u201380.10.3233\/FI-2018-1674","DOI":"10.3233\/FI-2018-1674"},{"key":"2023033119204010295_j_jib-2018-0018_ref_028_w2aab3b7b5b1b6b1ab1b6c28Aa","doi-asserted-by":"crossref","unstructured":"Johnson X, Alric J. Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryotic Cell. 2013;12:776\u201393.10.1128\/EC.00318-1223543671","DOI":"10.1128\/EC.00318-12"},{"key":"2023033119204010295_j_jib-2018-0018_ref_029_w2aab3b7b5b1b6b1ab1b6c29Aa","doi-asserted-by":"crossref","unstructured":"Chen F, Johns MR. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochemistry. 1996;31:601\u20134.10.1016\/S0032-9592(96)00006-4","DOI":"10.1016\/S0032-9592(96)00006-4"},{"key":"2023033119204010295_j_jib-2018-0018_ref_030_w2aab3b7b5b1b6b1ab1b6c30Aa","doi-asserted-by":"crossref","unstructured":"Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, et al. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology (Reading, England). 2002;148:1003\u201313.10.1099\/00221287-148-4-100311932446","DOI":"10.1099\/00221287-148-4-1003"},{"key":"2023033119204010295_j_jib-2018-0018_ref_031_w2aab3b7b5b1b6b1ab1b6c31Aa","doi-asserted-by":"crossref","unstructured":"Hynne F, Dan\u00f8 S, S\u00f8rensen PG. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem. 2001;94:121\u201363.10.1016\/S0301-4622(01)00229-011744196","DOI":"10.1016\/S0301-4622(01)00229-0"},{"key":"2023033119204010295_j_jib-2018-0018_ref_032_w2aab3b7b5b1b6b1ab1b6c32Aa","doi-asserted-by":"crossref","unstructured":"Jabalquinto AM, Cardemil E. The kinetic mechanism of yeast phosphoenolpyruvate carboxykinase. Biochim Biophys Acta. 1993;1161:85\u201390.842242310.1016\/0167-4838(93)90200-B","DOI":"10.1016\/0167-4838(93)90200-B"},{"key":"2023033119204010295_j_jib-2018-0018_ref_033_w2aab3b7b5b1b6b1ab1b6c33Aa","doi-asserted-by":"crossref","unstructured":"Laisk A, Walker DA. A mathematical model of electron transport. Thermodynamic necessity for photosystem II regulation: \u2018light stomata\u2019. Proc R Soc Lond B Biol Sci. 1989;237:417\u201344.10.1098\/rspb.1989.0058","DOI":"10.1098\/rspb.1989.0058"},{"key":"2023033119204010295_j_jib-2018-0018_ref_034_w2aab3b7b5b1b6b1ab1b6c34Aa","doi-asserted-by":"crossref","unstructured":"Reczek PR, Villee CA. A purification of microsomal glucose-6-phosphatase from human tissue. Biochem Biophys Res Commun. 1982;107:1158\u201365.629151710.1016\/0006-291X(82)90643-X","DOI":"10.1016\/0006-291X(82)90643-X"},{"key":"2023033119204010295_j_jib-2018-0018_ref_035_w2aab3b7b5b1b6b1ab1b6c35Aa","doi-asserted-by":"crossref","unstructured":"Singh VK, Ghosh I. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets. Theor Biol Med Model. 2006;3:27.1688702010.1186\/1742-4682-3-27","DOI":"10.1186\/1742-4682-3-27"},{"key":"2023033119204010295_j_jib-2018-0018_ref_036_w2aab3b7b5b1b6b1ab1b6c36Aa","doi-asserted-by":"crossref","unstructured":"Zhu XG, de Sturler E, Long SP. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol. 2007;145:513\u201326.10.1104\/pp.107.103713","DOI":"10.1104\/pp.107.103713"},{"key":"2023033119204010295_j_jib-2018-0018_ref_037_w2aab3b7b5b1b6b1ab1b6c37Aa","doi-asserted-by":"crossref","unstructured":"Xu S, Zhang X, Xu H, Dong B, Qu X, Chen B, et al. Silane modified upconversion nanoparticles with multifunctions: imaging, therapy and hypoxia detection. Sci Rep. 2016;6:22350.10.1038\/srep2235026924009","DOI":"10.1038\/srep22350"},{"key":"2023033119204010295_j_jib-2018-0018_ref_038_w2aab3b7b5b1b6b1ab1b6c38Aa","doi-asserted-by":"crossref","unstructured":"Kozuleva MA, Ivanov BN. Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids. Photosynth Res. 2010;105:51\u201361.10.1007\/s11120-010-9565-520532996","DOI":"10.1007\/s11120-010-9565-5"},{"key":"2023033119204010295_j_jib-2018-0018_ref_039_w2aab3b7b5b1b6b1ab1b6c39Aa","doi-asserted-by":"crossref","unstructured":"Nikel PI, Zhu J, San KY, Mendez BS, Bennett GN. Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. J Bacteriol. 2009;191:5538\u201348.10.1128\/JB.00174-0919561129","DOI":"10.1128\/JB.00174-09"},{"key":"2023033119204010295_j_jib-2018-0018_ref_040_w2aab3b7b5b1b6b1ab1b6c40Aa","doi-asserted-by":"crossref","unstructured":"Chapman SP, Paget CM, Johnson GN, Schwartz JM. Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii. Front Plant Sci. 2015;6:474.26175742","DOI":"10.3389\/fpls.2015.00474"},{"key":"2023033119204010295_j_jib-2018-0018_ref_041_w2aab3b7b5b1b6b1ab1b6c41Aa","doi-asserted-by":"crossref","unstructured":"Boyle NR, Sengupta N, Morgan JA. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. PLoS ONE. 2017;12:e0177292.2854225210.1371\/journal.pone.0177292","DOI":"10.1371\/journal.pone.0177292"},{"key":"2023033119204010295_j_jib-2018-0018_ref_042_w2aab3b7b5b1b6b1ab1b6c42Aa","doi-asserted-by":"crossref","unstructured":"Lauersen KJ, Baier T, Wichmann J, Wordenweber R, Mussgnug JH, Hubner W, et al. Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metab Eng. 2016;38:331\u201343.10.1016\/j.ymben.2016.07.01327474353","DOI":"10.1016\/j.ymben.2016.07.013"},{"key":"2023033119204010295_j_jib-2018-0018_ref_043_w2aab3b7b5b1b6b1ab1b6c43Aa","doi-asserted-by":"crossref","unstructured":"Wichmann J, Baier T, Wentnagel E, Lauersen KJ, Kruse O. Tailored carbon partitioning for phototrophic production of (E)-\u03b1-bisabolene from the green microalga Chlamydomonas reinhardtii. Metab Eng. 2018;45:211\u201322.10.1016\/j.ymben.2017.12.010","DOI":"10.1016\/j.ymben.2017.12.010"},{"key":"2023033119204010295_j_jib-2018-0018_ref_044_w2aab3b7b5b1b6b1ab1b6c44Aa","doi-asserted-by":"crossref","unstructured":"Venkanna D, Sudfeld C, Baier T, Homburg SV, Patel AV, Wobbe L, et al. Knock-down of the IFR1 protein perturbs the homeostasis of reactive electrophile species and boosts photosynthetic hydrogen production in chlamydomonas reinhardtii. Front Plant Sci. 2017;8:1347.2882468210.3389\/fpls.2017.01347","DOI":"10.3389\/fpls.2017.01347"},{"key":"2023033119204010295_j_jib-2018-0018_ref_045_w2aab3b7b5b1b6b1ab1b6c45Aa","doi-asserted-by":"crossref","unstructured":"Kasimova MR, Grigiene J, Krab K, Hagedorn PH, Flyvbjerg H, Andersen PE, et al. The free NADH concentration is kept constant in plant mitochondria under different metabolic conditions. Plant Cell. 2006;18:688\u201398.10.1105\/tpc.105.03935416461578","DOI":"10.1105\/tpc.105.039354"},{"key":"2023033119204010295_j_jib-2018-0018_ref_046_w2aab3b7b5b1b6b1ab1b6c46Aa","doi-asserted-by":"crossref","unstructured":"Igamberdiev AU, Gardestr\u00f6m P. Regulation of NAD-and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves. Biochim Biophys Acta Bioenerg. 2003;1606:117\u201325.10.1016\/S0005-2728(03)00106-3","DOI":"10.1016\/S0005-2728(03)00106-3"},{"key":"2023033119204010295_j_jib-2018-0018_ref_047_w2aab3b7b5b1b6b1ab1b6c47Aa","doi-asserted-by":"crossref","unstructured":"London J, Knight M. Concentrations of nicotinamide nucleotide coenzymes in micro-organisms. Microbiology. 1966;44:241\u201354.","DOI":"10.1099\/00221287-44-2-241"},{"key":"2023033119204010295_j_jib-2018-0018_ref_048_w2aab3b7b5b1b6b1ab1b6c48Aa","unstructured":"Boyer PD, Lardy H, Myrb\u00e4ck K, editor(s). The Enzymes. Vol. 3. USA: Academic Press; 1960."},{"key":"2023033119204010295_j_jib-2018-0018_ref_049_w2aab3b7b5b1b6b1ab1b6c49Aa","doi-asserted-by":"crossref","unstructured":"Takebe I, Kitahara K. Levels of nicotinamide nucleotide coenzymes in lactic acid bacteria. J Gen Appl Microbiol. 1963;9:31\u201340.10.2323\/jgam.9.31","DOI":"10.2323\/jgam.9.31"},{"key":"2023033119204010295_j_jib-2018-0018_ref_050_w2aab3b7b5b1b6b1ab1b6c50Aa","doi-asserted-by":"crossref","unstructured":"Wimpenny JW, Firth A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol. 1972;111:24\u201332.4360220","DOI":"10.1128\/jb.111.1.24-32.1972"},{"key":"2023033119204010295_j_jib-2018-0018_ref_051_w2aab3b7b5b1b6b1ab1b6c51Aa","doi-asserted-by":"crossref","unstructured":"Brody S. Regulation of pyridine nucleotide levels and ratios in Neurospora crassa. J Biol Chem. 1972;247:6013\u20137.4405599","DOI":"10.1016\/S0021-9258(19)44756-X"},{"key":"2023033119204010295_j_jib-2018-0018_ref_052_w2aab3b7b5b1b6b1ab1b6c52Aa","doi-asserted-by":"crossref","unstructured":"Olin-Sandoval V, Gonz\u00e1lez-Ch\u00e1vez Z, Berzunza-Cruz M, Mart\u00ednez I, Jasso-Ch\u00e1vez R, Becker I, et al. Drug target validation of the trypanothione pathway enzymes through metabolic modelling. FEBS J. 2012;279:1811\u201333.10.1111\/j.1742-4658.2012.08557.x22394478","DOI":"10.1111\/j.1742-4658.2012.08557.x"},{"key":"2023033119204010295_j_jib-2018-0018_ref_053_w2aab3b7b5b1b6b1ab1b6c53Aa","doi-asserted-by":"crossref","unstructured":"Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, Renstr\u00f6m E, Schuit FC, et al. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes. 2005;54:2132\u201342.10.2337\/diabetes.54.7.213215983215","DOI":"10.2337\/diabetes.54.7.2132"},{"key":"2023033119204010295_j_jib-2018-0018_ref_054_w2aab3b7b5b1b6b1ab1b6c54Aa","doi-asserted-by":"crossref","unstructured":"Veech R, Eggleston L, Krebs H. The redox state of free nicotinamide\u2013adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969;115:609.439103910.1042\/bj1150609a","DOI":"10.1042\/bj1150609a"},{"key":"2023033119204010295_j_jib-2018-0018_ref_055_w2aab3b7b5b1b6b1ab1b6c55Aa","doi-asserted-by":"crossref","unstructured":"Allue I, Gandelman O, Dementieva E, Ugarova N, Cobbold P. Evidence for rapid consumption of millimolar concentrations of cytoplasmic ATP during rigor-contracture of metabolically compromised single cardiomyocytes. Biochem J. 1996;319:463.891268210.1042\/bj3190463","DOI":"10.1042\/bj3190463"},{"key":"2023033119204010295_j_jib-2018-0018_ref_056_w2aab3b7b5b1b6b1ab1b6c56Aa","doi-asserted-by":"crossref","unstructured":"Koop A, Cobbold PH. Continuous bioluminescent monitoring of cytoplasmic ATP in single isolated rat hepatocytes during metabolic poisoning. Biochem J. 1993;295:165.10.1042\/bj29501658216212","DOI":"10.1042\/bj2950165"},{"key":"2023033119204010295_j_jib-2018-0018_ref_057_w2aab3b7b5b1b6b1ab1b6c57Aa","doi-asserted-by":"crossref","unstructured":"Bowers KC, Allshire AP, Cobbold PH. Bioluminescent measurement in single cardiomyocytes of sudden cytosolic ATP depletion coincident with rigor. J Mol Cell Cardiol. 1992;24:213\u20138.10.1016\/0022-2828(92)93159-H1625346","DOI":"10.1016\/0022-2828(92)93159-H"},{"key":"2023033119204010295_j_jib-2018-0018_ref_058_w2aab3b7b5b1b6b1ab1b6c58Aa","doi-asserted-by":"crossref","unstructured":"Ainscow EK, Rutter GA. Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet \u03b2-cells: evidence for a Ca2+-dependent mechanism. Diabetes. 2002;51:S162\u201370.10.2337\/diabetes.51.2007.S16211815476","DOI":"10.2337\/diabetes.51.2007.S162"},{"key":"2023033119204010295_j_jib-2018-0018_ref_059_w2aab3b7b5b1b6b1ab1b6c59Aa","doi-asserted-by":"crossref","unstructured":"Gribble FM, Loussouarn G, Tucker SJ, Zhao C, Nichols CG, Ashcroft FM. A novel method for measurement of submembrane ATP concentration. J Biol Chem. 2000;275:30046\u20139.1086699610.1074\/jbc.M001010200","DOI":"10.1074\/jbc.M001010200"},{"key":"2023033119204010295_j_jib-2018-0018_ref_060_w2aab3b7b5b1b6b1ab1b6c60Aa","doi-asserted-by":"crossref","unstructured":"Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science. 2001;294:1102\u20135.10.1126\/science.1063518","DOI":"10.1126\/science.1063518"},{"key":"2023033119204010295_j_jib-2018-0018_ref_061_w2aab3b7b5b1b6b1ab1b6c61Aa","doi-asserted-by":"crossref","unstructured":"Miller D, Horowitz S. Intracellular compartmentalization of adenosine triphosphate. J Biol Chem. 1986;261:13911\u20135.3490471","DOI":"10.1016\/S0021-9258(18)66958-3"},{"key":"2023033119204010295_j_jib-2018-0018_ref_062_w2aab3b7b5b1b6b1ab1b6c62Aa","doi-asserted-by":"crossref","unstructured":"Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA. Glucose generates sub-plasma membrane ATP microdomains in single islet \u03b2-cells potential role for strategically located mitochondria. J Biol Chem. 1999;274:13281\u201391.10.1074\/jbc.274.19.1328110224088","DOI":"10.1074\/jbc.274.19.13281"}],"container-title":["Journal of Integrative Bioinformatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.degruyter.com\/view\/j\/jib.2018.15.issue-3\/jib-2018-0018\/jib-2018-0018.xml","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2018-0018\/xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2018-0018\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T06:25:08Z","timestamp":1680330308000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2018-0018\/html"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,9,1]]},"references-count":62,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2018,8,7]]},"published-print":{"date-parts":[[2018,9,25]]}},"alternative-id":["10.1515\/jib-2018-0018"],"URL":"https:\/\/doi.org\/10.1515\/jib-2018-0018","relation":{},"ISSN":["1613-4516"],"issn-type":[{"value":"1613-4516","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,9,1]]}}}