{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T09:15:07Z","timestamp":1726218907840},"reference-count":67,"publisher":"Walter de Gruyter GmbH","issue":"2","license":[{"start":{"date-parts":[[2018,6,1]],"date-time":"2018-06-01T00:00:00Z","timestamp":1527811200000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0"}],"funder":[{"DOI":"10.13039\/501100002915","name":"Fondation pour la Recherche M\u00e9dicale","doi-asserted-by":"publisher","award":["FRM DBI20141231801"],"id":[{"id":"10.13039\/501100002915","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,6,26]]},"abstract":"Abstract<\/jats:title>\n Proteomic and transcriptomic technologies resulted in massive biological datasets, their interpretation requiring sophisticated computational strategies. Efficient and intuitive real-time analysis remains challenging. We use proteomic data on 1417 proteins of the green microalga Chlamydomonas reinhardtii<\/jats:italic> to investigate physicochemical parameters governing selectivity of three cysteine-based redox post translational modifications (PTM): glutathionylation (SSG), nitrosylation (SNO) and disulphide bonds (SS) reduced by thioredoxins. We aim to understand underlying molecular mechanisms and structural determinants through integration of redox proteome data from gene- to structural level. Our interactive visual analytics approach on an 8.3 m2<\/jats:sup> display wall of 25 MPixel resolution features stereoscopic three dimensions (3D) representation performed by UnityMol WebGL. Virtual reality headsets complement the range of usage configurations for fully immersive tasks. Our experiments confirm that fast access to a rich cross-linked database is necessary for immersive analysis of structural data. We emphasize the possibility to display complex data structures and relationships in 3D, intrinsic to molecular structure visualization, but less common for omics-network analysis. Our setup is powered by MinOmics, an integrated analysis pipeline and visualization framework dedicated to multi-omics analysis. MinOmics integrates data from various sources into a materialized physical repository. We evaluate its performance, a design criterion for the framework.<\/jats:p>","DOI":"10.1515\/jib-2018-0006","type":"journal-article","created":{"date-parts":[[2018,7,12]],"date-time":"2018-07-12T11:05:52Z","timestamp":1531393552000},"source":"Crossref","is-referenced-by-count":23,"title":["MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis"],"prefix":"10.1515","volume":"15","author":[{"given":"Alexandre","family":"Maes","sequence":"first","affiliation":[{"name":"Laboratoire de Biologie Mol\u00e9culaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universit\u00e9, 13 rue Pierre et Marie Curie , 75005, Paris , France"}]},{"given":"Xavier","family":"Martinez","sequence":"additional","affiliation":[{"name":"Laboratoire de Biochimie Th\u00e9orique, CNRS, UPR9080, Institut de Biologie Physico-Chimique , Univ Paris Diderot, Sorbonne Paris Cit\u00e9, PSL Research University , 13 rue Pierre et Marie Curie , 75005, Paris , France"}]},{"given":"Karen","family":"Druart","sequence":"additional","affiliation":[{"name":"Laboratoire de Biochimie Th\u00e9orique, CNRS, UPR9080, Institut de Biologie Physico-Chimique , Univ Paris Diderot, Sorbonne Paris Cit\u00e9, PSL Research University , 13 rue Pierre et Marie Curie , 75005, Paris , France"}]},{"given":"Benoist","family":"Laurent","sequence":"additional","affiliation":[{"name":"Institut de Biologie Physico-Chimique, FRC 550, CNRS , Paris , France"}]},{"given":"Sean","family":"Gu\u00e9gan","sequence":"additional","affiliation":[{"name":"Laboratoire de Biochimie Th\u00e9orique, CNRS, UPR9080, Institut de Biologie Physico-Chimique , Univ Paris Diderot, Sorbonne Paris Cit\u00e9, PSL Research University , 13 rue Pierre et Marie Curie , 75005, Paris , France"}]},{"given":"Christophe H.","family":"Marchand","sequence":"additional","affiliation":[{"name":"Laboratoire de Biologie Mol\u00e9culaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universit\u00e9, 13 rue Pierre et Marie Curie , 75005, Paris , France"}]},{"given":"St\u00e9phane D.","family":"Lemaire","sequence":"additional","affiliation":[{"name":"Laboratoire de Biologie Mol\u00e9culaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universit\u00e9, 13 rue Pierre et Marie Curie , 75005, Paris , France"}]},{"given":"Marc","family":"Baaden","sequence":"additional","affiliation":[{"name":"Laboratoire de Biochimie Th\u00e9orique, CNRS, UPR9080, Institut de Biologie Physico-Chimique , Univ Paris Diderot, Sorbonne Paris Cit\u00e9, PSL Research University , 13 rue Pierre et Marie Curie , 75005, Paris , France"}]}],"member":"374","published-online":{"date-parts":[[2018,6,21]]},"reference":[{"key":"2023033120302592060_j_jib-2018-0006_ref_001_w2aab3b7b4b1b6b1ab1b8b1Aa","doi-asserted-by":"crossref","unstructured":"Gomez-Cabrero D, Abugessaisa I, Maier D, Teschendorff A, Merkenschlager M, Gisel A, et al. Data integration in the era of omics: current and future challenges. BMC Syst Biol. 2014;8(Suppl 2):I1.2503299010.1186\/1752-0509-8-S2-I1","DOI":"10.1186\/1752-0509-8-S2-I1"},{"key":"2023033120302592060_j_jib-2018-0006_ref_002_w2aab3b7b4b1b6b1ab1b8b2Aa","doi-asserted-by":"crossref","unstructured":"Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al. GenBank. Nucleic Acids Res. 2018;46(D1):D41\u20137.2914046810.1093\/nar\/gkx1094","DOI":"10.1093\/nar\/gkx1094"},{"key":"2023033120302592060_j_jib-2018-0006_ref_003_w2aab3b7b4b1b6b1ab1b8b3Aa","doi-asserted-by":"crossref","unstructured":"Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A, Bates K, et al. The EMBL Nucleotide Sequence Database. Nucleic Acids Res. 2005;33:D29\u201333.15608199","DOI":"10.1093\/nar\/gki098"},{"key":"2023033120302592060_j_jib-2018-0006_ref_004_w2aab3b7b4b1b6b1ab1b8b4Aa","doi-asserted-by":"crossref","unstructured":"Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, et al. The UCSC Genome Browser Database. Nucleic Acids Res. 2003;31:51\u20134.10.1093\/nar\/gkg12912519945","DOI":"10.1093\/nar\/gkg129"},{"key":"2023033120302592060_j_jib-2018-0006_ref_005_w2aab3b7b4b1b6b1ab1b8b5Aa","doi-asserted-by":"crossref","unstructured":"Barker WC, Garavelli JS, Huang H, McGarvey PB, Orcutt BC, Srinivasarao GY, et al. The protein information resource (PIR). Nucleic Acids Res. 2000;28:41\u20134.1059217710.1093\/nar\/28.1.41","DOI":"10.1093\/nar\/28.1.41"},{"key":"2023033120302592060_j_jib-2018-0006_ref_006_w2aab3b7b4b1b6b1ab1b8b6Aa","doi-asserted-by":"crossref","unstructured":"Pundir S, Martin MJ, O\u2019Donovan C. UniProt Protein Knowledgebase. Methods Mol Biol. 2017;1558:41\u201355.10.1007\/978-1-4939-6783-4_228150232","DOI":"10.1007\/978-1-4939-6783-4_2"},{"key":"2023033120302592060_j_jib-2018-0006_ref_007_w2aab3b7b4b1b6b1ab1b8b7Aa","doi-asserted-by":"crossref","unstructured":"Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235\u201342.10.1093\/nar\/28.1.23510592235","DOI":"10.1093\/nar\/28.1.235"},{"key":"2023033120302592060_j_jib-2018-0006_ref_008_w2aab3b7b4b1b6b1ab1b8b8Aa","doi-asserted-by":"crossref","unstructured":"Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25\u20139.1080265110.1038\/75556","DOI":"10.1038\/75556"},{"key":"2023033120302592060_j_jib-2018-0006_ref_009_w2aab3b7b4b1b6b1ab1b8b9Aa","doi-asserted-by":"crossref","unstructured":"Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222\u201330.2428837110.1093\/nar\/gkt1223","DOI":"10.1093\/nar\/gkt1223"},{"key":"2023033120302592060_j_jib-2018-0006_ref_010_w2aab3b7b4b1b6b1ab1b8c10Aa","doi-asserted-by":"crossref","unstructured":"Hubbard TJ, Murzin AG, Brenner SE, Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res. 1997;25:236\u20139.901654410.1093\/nar\/25.1.236","DOI":"10.1093\/nar\/25.1.236"},{"key":"2023033120302592060_j_jib-2018-0006_ref_011_w2aab3b7b4b1b6b1ab1b8c11Aa","doi-asserted-by":"crossref","unstructured":"Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44(D1):D336\u201342.2657859210.1093\/nar\/gkv1194","DOI":"10.1093\/nar\/gkv1194"},{"key":"2023033120302592060_j_jib-2018-0006_ref_012_w2aab3b7b4b1b6b1ab1b8c12Aa","doi-asserted-by":"crossref","unstructured":"Binder JX, Pletscher-Frankild S, Tsafou K, Stolte C, O\u2019Donoghue SI, Schneider R, et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database (Oxford). 2014;2014:bau012.10.1093\/database\/bau01224573882","DOI":"10.1093\/database\/bau012"},{"key":"2023033120302592060_j_jib-2018-0006_ref_013_w2aab3b7b4b1b6b1ab1b8c13Aa","doi-asserted-by":"crossref","unstructured":"Kielman J, Thomas J, May R. Foundations and frontiers in visual analytics. Inf Vis. 2009;8:239\u201346.10.1057\/ivs.2009.25","DOI":"10.1057\/ivs.2009.25"},{"key":"2023033120302592060_j_jib-2018-0006_ref_014_w2aab3b7b4b1b6b1ab1b8c14Aa","doi-asserted-by":"crossref","unstructured":"Khushi M. Benchmarking database performance for genomic data. J Cell Biochem. 2015;116:877\u201383.10.1002\/jcb.2504925560631","DOI":"10.1002\/jcb.25049"},{"key":"2023033120302592060_j_jib-2018-0006_ref_015_w2aab3b7b4b1b6b1ab1b8c15Aa","doi-asserted-by":"crossref","unstructured":"Kozanitis C, Heiberg A, Varghese G, Bafna V. Using Genome Query Language to uncover genetic variation. Bioinformatics. 2014;30:1\u20138.2375118110.1093\/bioinformatics\/btt250","DOI":"10.1093\/bioinformatics\/btt250"},{"key":"2023033120302592060_j_jib-2018-0006_ref_016_w2aab3b7b4b1b6b1ab1b8c16Aa","doi-asserted-by":"crossref","unstructured":"Latendresse M, Karp PD. An advanced web query interface for biological databases. Database (Oxford). 2010;2010:baq006.20624715","DOI":"10.1093\/database\/baq006"},{"key":"2023033120302592060_j_jib-2018-0006_ref_017_w2aab3b7b4b1b6b1ab1b8c17Aa","doi-asserted-by":"crossref","unstructured":"Vilaplana J, Solsona F, Teixido I, Usie A, Karathia H, Alves R, et al. Database constraints applied to metabolic pathway reconstruction tools. ScientificWorldJournal. 2014;2014:967294.25202745","DOI":"10.1155\/2014\/967294"},{"key":"2023033120302592060_j_jib-2018-0006_ref_018_w2aab3b7b4b1b6b1ab1b8c18Aa","doi-asserted-by":"crossref","unstructured":"Holovaty A, Kaplan-Moss J. The definitive guide to Django: Web development done right: Apress; 2009.","DOI":"10.1007\/978-1-4302-1937-8"},{"key":"2023033120302592060_j_jib-2018-0006_ref_019_w2aab3b7b4b1b6b1ab1b8c19Aa","unstructured":"Marrin C. Webgl specification. Khronos WebGL Working Group. 2011."},{"key":"2023033120302592060_j_jib-2018-0006_ref_020_w2aab3b7b4b1b6b1ab1b8c20Aa","doi-asserted-by":"crossref","unstructured":"Lv Z, Tek A, Da Silva F, Empereur-mot C, Chavent M, Baaden M. Game on, science \u2013 how video game technology may help biologists tackle visualization challenges. PLoS One. 2013;8:e57990.10.1371\/journal.pone.005799023483961","DOI":"10.1371\/journal.pone.0057990"},{"key":"2023033120302592060_j_jib-2018-0006_ref_021_w2aab3b7b4b1b6b1ab1b8c21Aa","doi-asserted-by":"crossref","unstructured":"Rose AS, Hildebrand PW. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 2015;43:W576\u20139.10.1093\/nar\/gkv40225925569","DOI":"10.1093\/nar\/gkv402"},{"key":"2023033120302592060_j_jib-2018-0006_ref_022_w2aab3b7b4b1b6b1ab1b8c22Aa","doi-asserted-by":"crossref","unstructured":"Zakai A, editor Emscripten: an LLVM-to-JavaScript compiler. Proceedings of the ACM international conference companion on Object oriented programming systems languages and applications companion; 2011: ACM.","DOI":"10.1145\/2048147.2048224"},{"key":"2023033120302592060_j_jib-2018-0006_ref_023_w2aab3b7b4b1b6b1ab1b8c23Aa","doi-asserted-by":"crossref","unstructured":"Fung DC, Hong SH, Koschutzki D, Schreiber F, Xu K. 2.5D visualisation of overlapping biological networks. J Integr Bioinform. 2008;5:337\u201342.","DOI":"10.1515\/jib-2008-90"},{"key":"2023033120302592060_j_jib-2018-0006_ref_024_w2aab3b7b4b1b6b1ab1b8c24Aa","doi-asserted-by":"crossref","unstructured":"Widjaja YY, Pang CN, Li SS, Wilkins MR, Lambert TD. The Interactorium: visualising proteins, complexes and interaction networks in a virtual 3-D cell. Proteomics. 2009;9:5309\u201315.10.1002\/pmic.200900260","DOI":"10.1002\/pmic.200900260"},{"key":"2023033120302592060_j_jib-2018-0006_ref_025_w2aab3b7b4b1b6b1ab1b8c25Aa","doi-asserted-by":"crossref","unstructured":"Secrier M, Pavlopoulos GA, Aerts J, Schneider R. Arena3D: visualizing time-driven phenotypic differences in biological systems. BMC Bioinformatics. 2012;13:45.2243960810.1186\/1471-2105-13-45","DOI":"10.1186\/1471-2105-13-45"},{"key":"2023033120302592060_j_jib-2018-0006_ref_026_w2aab3b7b4b1b6b1ab1b8c26Aa","doi-asserted-by":"crossref","unstructured":"Sommer B, Tiys ES, Kormeier B, Hippe K, Janowski SJ, Ivanisenko TV, et al. Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches. J Integr Bioinform. 2010;7:148.21068463","DOI":"10.1515\/jib-2010-148"},{"key":"2023033120302592060_j_jib-2018-0006_ref_027_w2aab3b7b4b1b6b1ab1b8c27Aa","doi-asserted-by":"crossref","unstructured":"O\u2019Donoghue SI, Sabir KS, Kalemanov M, Stolte C, Wellmann B, Ho V, et al. Aquaria: simplifying discovery and insight from protein structures. Nat Methods. 2015;12:98\u20139.2563350110.1038\/nmeth.3258","DOI":"10.1038\/nmeth.3258"},{"key":"2023033120302592060_j_jib-2018-0006_ref_028_w2aab3b7b4b1b6b1ab1b8c28Aa","doi-asserted-by":"crossref","unstructured":"Topel T, Kormeier B, Klassen A, Hofestadt R. BioDWH: a data warehouse kit for life science data integration. J Integr Bioinform. 2008;5:93\u2013102.","DOI":"10.1515\/jib-2008-93"},{"key":"2023033120302592060_j_jib-2018-0006_ref_029_w2aab3b7b4b1b6b1ab1b8c29Aa","doi-asserted-by":"crossref","unstructured":"Sommer B, Barnes DG, Boyd S, Chandler T, Cordeil M, Czauderna T, et al. 3D-stereoscopic immersive analytics projects at Monash University and University of Konstanz. Electronic Imaging. 2017;2017:179\u201387.10.2352\/ISSN.2470-1173.2017.5.SDA-109","DOI":"10.2352\/ISSN.2470-1173.2017.5.SDA-109"},{"key":"2023033120302592060_j_jib-2018-0006_ref_030_w2aab3b7b4b1b6b1ab1b8c30Aa","doi-asserted-by":"crossref","unstructured":"Scaife MA, Nguyen GT, Rico J, Lambert D, Helliwell KE, Smith AG. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 2015;82:532\u201346.2564156110.1111\/tpj.12781","DOI":"10.1111\/tpj.12781"},{"key":"2023033120302592060_j_jib-2018-0006_ref_031_w2aab3b7b4b1b6b1ab1b8c31Aa","doi-asserted-by":"crossref","unstructured":"Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15:536\u201350.10.1038\/nrm384125053359","DOI":"10.1038\/nrm3841"},{"key":"2023033120302592060_j_jib-2018-0006_ref_032_w2aab3b7b4b1b6b1ab1b8c32Aa","doi-asserted-by":"crossref","unstructured":"Go YM, Chandler JD, Jones DP. The cysteine proteome. Free Radic Biol Med. 2015;84:227\u201345.2584365710.1016\/j.freeradbiomed.2015.03.022","DOI":"10.1016\/j.freeradbiomed.2015.03.022"},{"key":"2023033120302592060_j_jib-2018-0006_ref_033_w2aab3b7b4b1b6b1ab1b8c33Aa","doi-asserted-by":"crossref","unstructured":"Couturier J, Jacquot JP, Rouhier N. Toward a refined classification of class I dithiol glutaredoxins from poplar: biochemical basis for the definition of two subclasses. Front Plant Sci. 2013;4:518.","DOI":"10.3389\/fpls.2013.00518"},{"key":"2023033120302592060_j_jib-2018-0006_ref_034_w2aab3b7b4b1b6b1ab1b8c34Aa","doi-asserted-by":"crossref","unstructured":"Go YM, Jones DP. Redox biology: interface of the exposome with the proteome, epigenome and genome. Redox Biol. 2014;2:358\u201360.2456385310.1016\/j.redox.2013.12.032","DOI":"10.1016\/j.redox.2013.12.032"},{"key":"2023033120302592060_j_jib-2018-0006_ref_035_w2aab3b7b4b1b6b1ab1b8c35Aa","doi-asserted-by":"crossref","unstructured":"Paulsen CE, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev. 2013;113:4633\u201379.2351433610.1021\/cr300163e","DOI":"10.1021\/cr300163e"},{"key":"2023033120302592060_j_jib-2018-0006_ref_036_w2aab3b7b4b1b6b1ab1b8c36Aa","doi-asserted-by":"crossref","unstructured":"Poole LB, Schoneich C. Introduction: What we do and do not know regarding redox processes of thiols in signaling pathways. Free Radic Biol Med. 2015;80:145\u20137.2574647810.1016\/j.freeradbiomed.2015.02.005","DOI":"10.1016\/j.freeradbiomed.2015.02.005"},{"key":"2023033120302592060_j_jib-2018-0006_ref_037_w2aab3b7b4b1b6b1ab1b8c37Aa","doi-asserted-by":"crossref","unstructured":"Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468:790\u20135.10.1038\/nature0947221085121","DOI":"10.1038\/nature09472"},{"key":"2023033120302592060_j_jib-2018-0006_ref_038_w2aab3b7b4b1b6b1ab1b8c38Aa","doi-asserted-by":"crossref","unstructured":"Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol. 2008;12:746\u201354.10.1016\/j.cbpa.2008.07.02818804173","DOI":"10.1016\/j.cbpa.2008.07.028"},{"key":"2023033120302592060_j_jib-2018-0006_ref_039_w2aab3b7b4b1b6b1ab1b8c39Aa","doi-asserted-by":"crossref","unstructured":"Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med. 2008;45:549\u201361.10.1016\/j.freeradbiomed.2008.05.00418544350","DOI":"10.1016\/j.freeradbiomed.2008.05.004"},{"key":"2023033120302592060_j_jib-2018-0006_ref_040_w2aab3b7b4b1b6b1ab1b8c40Aa","doi-asserted-by":"crossref","unstructured":"Zaffagnini M, Bedhomme M, Groni H, Marchand CH, Puppo C, Gontero B, et al. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. Mol Cell Proteomics. 2012;11:M111.014142.10.1074\/mcp.M111.01414222122882","DOI":"10.1074\/mcp.M111.014142"},{"key":"2023033120302592060_j_jib-2018-0006_ref_041_w2aab3b7b4b1b6b1ab1b8c41Aa","doi-asserted-by":"crossref","unstructured":"Morisse S, Zaffagnini M, Gao XH, Lemaire SD, Marchand CH. Insight into protein S-nitrosylation in Chlamydomonas reinhardtii. Antioxid Redox Signal. 2014;21:1271\u201384.2432879510.1089\/ars.2013.5632","DOI":"10.1089\/ars.2013.5632"},{"key":"2023033120302592060_j_jib-2018-0006_ref_042_w2aab3b7b4b1b6b1ab1b8c42Aa","doi-asserted-by":"crossref","unstructured":"Perez-Perez ME, Mauries A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, et al. The deep thioredoxome in chlamydomonas reinhardtii: new insights into redox regulation. Mol Plant. 2017;10:1107\u201325.2873949510.1016\/j.molp.2017.07.009","DOI":"10.1016\/j.molp.2017.07.009"},{"key":"2023033120302592060_j_jib-2018-0006_ref_043_w2aab3b7b4b1b6b1ab1b8c43Aa","doi-asserted-by":"crossref","unstructured":"Morisse S, Michelet L, Bedhomme M, Marchand CH, Calvaresi M, Trost P, et al. Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii. J Biol Chem. 2014;289:30012\u201324.2520201510.1074\/jbc.M114.597997","DOI":"10.1074\/jbc.M114.597997"},{"key":"2023033120302592060_j_jib-2018-0006_ref_044_w2aab3b7b4b1b6b1ab1b8c44Aa","doi-asserted-by":"crossref","unstructured":"Pons JL, Labesse G. @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes. Nucleic Acids Res. 2009;37:W485\u201391.1944344810.1093\/nar\/gkp368","DOI":"10.1093\/nar\/gkp368"},{"key":"2023033120302592060_j_jib-2018-0006_ref_045_w2aab3b7b4b1b6b1ab1b8c45Aa","doi-asserted-by":"crossref","unstructured":"Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21:951\u201360.1553160310.1093\/bioinformatics\/bti125","DOI":"10.1093\/bioinformatics\/bti125"},{"key":"2023033120302592060_j_jib-2018-0006_ref_046_w2aab3b7b4b1b6b1ab1b8c46Aa","doi-asserted-by":"crossref","unstructured":"Shi J, Blundell TL, Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol. 2001;310:243\u201357.10.1006\/jmbi.2001.476211419950","DOI":"10.1006\/jmbi.2001.4762"},{"key":"2023033120302592060_j_jib-2018-0006_ref_047_w2aab3b7b4b1b6b1ab1b8c47Aa","doi-asserted-by":"crossref","unstructured":"Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389\u2013402.10.1093\/nar\/25.17.33899254694","DOI":"10.1093\/nar\/25.17.3389"},{"key":"2023033120302592060_j_jib-2018-0006_ref_048_w2aab3b7b4b1b6b1ab1b8c48Aa","doi-asserted-by":"crossref","unstructured":"Zhou H, Zhou Y. SPARKS 2 and SP3 servers in CASP6. Proteins. 2005;61(Suppl 7):152\u20136.10.1002\/prot.2073216187357","DOI":"10.1002\/prot.20732"},{"key":"2023033120302592060_j_jib-2018-0006_ref_049_w2aab3b7b4b1b6b1ab1b8c49Aa","doi-asserted-by":"crossref","unstructured":"Labesse G, Mornon J. Incremental threading optimization (TITO) to help alignment and modelling of remote homologues. Bioinformatics. 1998;14:206\u201311.10.1093\/bioinformatics\/14.2.2069545453","DOI":"10.1093\/bioinformatics\/14.2.206"},{"key":"2023033120302592060_j_jib-2018-0006_ref_050_w2aab3b7b4b1b6b1ab1b8c50Aa","doi-asserted-by":"crossref","unstructured":"Canutescu AA, Shelenkov AA, Dunbrack RL, Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 2003;12:2001\u201314.1293099910.1110\/ps.03154503","DOI":"10.1110\/ps.03154503"},{"key":"2023033120302592060_j_jib-2018-0006_ref_051_w2aab3b7b4b1b6b1ab1b8c51Aa","doi-asserted-by":"crossref","unstructured":"Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins. 1995;23:318\u201326.871082510.1002\/prot.340230306","DOI":"10.1002\/prot.340230306"},{"key":"2023033120302592060_j_jib-2018-0006_ref_052_w2aab3b7b4b1b6b1ab1b8c52Aa","doi-asserted-by":"crossref","unstructured":"Benkert P, Tosatto SC, Schomburg D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins. 2008;71:261\u201377.10.1002\/prot.2171517932912","DOI":"10.1002\/prot.21715"},{"key":"2023033120302592060_j_jib-2018-0006_ref_053_w2aab3b7b4b1b6b1ab1b8c53Aa","doi-asserted-by":"crossref","unstructured":"Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins. 2005;61:704\u201321.10.1002\/prot.2066016231289","DOI":"10.1002\/prot.20660"},{"key":"2023033120302592060_j_jib-2018-0006_ref_054_w2aab3b7b4b1b6b1ab1b8c54Aa","unstructured":"Hubbard S, Thornton J. NACCESS: Department of Biochemistry and Molecular Biology, University College London. Software available at http:\/\/www.bioinf.manchester.ac.uk\/naccess\/nacdownload.html. 1993."},{"key":"2023033120302592060_j_jib-2018-0006_ref_055_w2aab3b7b4b1b6b1ab1b8c55Aa","doi-asserted-by":"crossref","unstructured":"Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577\u2013637.666733310.1002\/bip.360221211","DOI":"10.1002\/bip.360221211"},{"key":"2023033120302592060_j_jib-2018-0006_ref_056_w2aab3b7b4b1b6b1ab1b8c56Aa","doi-asserted-by":"crossref","unstructured":"Kortemme T, Creighton TE. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol. 1995;253:799\u2013812.10.1006\/jmbi.1995.05927473753","DOI":"10.1006\/jmbi.1995.0592"},{"key":"2023033120302592060_j_jib-2018-0006_ref_057_w2aab3b7b4b1b6b1ab1b8c57Aa","unstructured":"RDevelopment CORE TEAM R. R: A language and environment for statistical computing. Austria: R foundation for statistical computing Vienna; 2008."},{"key":"2023033120302592060_j_jib-2018-0006_ref_058_w2aab3b7b4b1b6b1ab1b8c58Aa","doi-asserted-by":"crossref","unstructured":"Annett J. Hierarchical task analysis. Handbook of cognitive task design. 2003;2:17\u201335.","DOI":"10.1201\/9781410607775.ch2"},{"key":"2023033120302592060_j_jib-2018-0006_ref_059_w2aab3b7b4b1b6b1ab1b8c59Aa","doi-asserted-by":"crossref","unstructured":"Perez S, Tubiana T, Imberty A, Baaden M. Three-dimensional representations of complex carbohydrates and polysaccharides\u2013SweetUnityMol: a video game-based computer graphic software. Glycobiology. 2015;25:483\u201391.2547509310.1093\/glycob\/cwu133","DOI":"10.1093\/glycob\/cwu133"},{"key":"2023033120302592060_j_jib-2018-0006_ref_060_w2aab3b7b4b1b6b1ab1b8c60Aa","doi-asserted-by":"crossref","unstructured":"Trellet M, Ferey N, Baaden M, Bourdot P, editors. Content and task based navigation for structural biology in 3D environments. Virtual and Augmented Reality for Molecular Science (VARMS@ IEEEVR), 2015 IEEE 1st International Workshop on; 2015: IEEE, 2015.","DOI":"10.1109\/VARMS.2015.7151726"},{"key":"2023033120302592060_j_jib-2018-0006_ref_061_w2aab3b7b4b1b6b1ab1b8c61Aa","doi-asserted-by":"crossref","unstructured":"Chavent M, Vanel A, Tek A, Levy B, Robert S, Raffin B, et al. GPU-accelerated atom and dynamic bond visualization using hyperballs: a unified algorithm for balls, sticks, and hyperboloids. J Comput Chem. 2011;32:2924\u201335.2173555910.1002\/jcc.21861","DOI":"10.1002\/jcc.21861"},{"key":"2023033120302592060_j_jib-2018-0006_ref_062_w2aab3b7b4b1b6b1ab1b8c62Aa","doi-asserted-by":"crossref","unstructured":"Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiere S, et al. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol. 2012;29:3625\u201339.10.1093\/molbev\/mss17822826458","DOI":"10.1093\/molbev\/mss178"},{"key":"2023033120302592060_j_jib-2018-0006_ref_063_w2aab3b7b4b1b6b1ab1b8c63Aa","doi-asserted-by":"crossref","unstructured":"Seth D, Hausladen A, Wang YJ, Stamler JS. Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR. Science. 2012;336:470\u20133.10.1126\/science.1215643","DOI":"10.1126\/science.1215643"},{"key":"2023033120302592060_j_jib-2018-0006_ref_064_w2aab3b7b4b1b6b1ab1b8c64Aa","doi-asserted-by":"crossref","unstructured":"Michelet L, Zaffagnini M, Morisse S, Sparla F, Perez-Perez ME, Francia F, et al. Redox regulation of the Calvin-Benson cycle: something old, something new. Front Plant Sci. 2013;4:470.24324475","DOI":"10.3389\/fpls.2013.00470"},{"key":"2023033120302592060_j_jib-2018-0006_ref_065_w2aab3b7b4b1b6b1ab1b8c65Aa","doi-asserted-by":"crossref","unstructured":"Leonard SE, Reddie KG, Carroll KS. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol. 2009;4:783\u201399.1964550910.1021\/cb900105q","DOI":"10.1021\/cb900105q"},{"key":"2023033120302592060_j_jib-2018-0006_ref_066_w2aab3b7b4b1b6b1ab1b8c66Aa","doi-asserted-by":"crossref","unstructured":"Shneiderman B. The eyes have it: a task by data type taxonomy for information visualizations. the craft of information visualization. San Francisco: Morgan Kaufmann; 2003. p. 364\u201371.","DOI":"10.1016\/B978-155860915-0\/50046-9"},{"key":"2023033120302592060_j_jib-2018-0006_ref_067_w2aab3b7b4b1b6b1ab1b8c67Aa","doi-asserted-by":"crossref","unstructured":"Gould NS, Evans P, Martinez-Acedo P, Marino SM, Gladyshev VN, Carroll KS, et al. Site-Specific Proteomic Mapping Identifies Selectively Modified Regulatory Cysteine Residues in Functionally Distinct Protein Networks. Chem Biol. 2015;22:965\u201375.10.1016\/j.chembiol.2015.06.01026165157","DOI":"10.1016\/j.chembiol.2015.06.010"}],"container-title":["Journal of Integrative Bioinformatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.degruyter.com\/view\/journals\/jib\/15\/2\/article-20180006.xml","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2018-0006\/xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2018-0006\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T09:54:11Z","timestamp":1680342851000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2018-0006\/html"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6,1]]},"references-count":67,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2018,6,21]]},"published-print":{"date-parts":[[2018,6,26]]}},"alternative-id":["10.1515\/jib-2018-0006"],"URL":"https:\/\/doi.org\/10.1515\/jib-2018-0006","relation":{},"ISSN":["1613-4516"],"issn-type":[{"value":"1613-4516","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,6,1]]}}}