{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,4,26]],"date-time":"2023-04-26T15:30:17Z","timestamp":1682523017631},"reference-count":57,"publisher":"Walter de Gruyter GmbH","issue":"3","license":[{"start":{"date-parts":[[2018,7,3]],"date-time":"2018-07-03T00:00:00Z","timestamp":1530576000000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,9,25]]},"abstract":"Abstract<\/jats:title>\n Metabolic adaptation to the host environment has been recognized as an essential mechanism of pathogenicity and the growth of Mycobacterium tuberculosis<\/jats:italic> (Mtb<\/jats:italic>) in the lungs for decades. The Mtb<\/jats:italic> uses CO2<\/jats:sub> as a source of carbon during the dormant or non-replicative state. However, there is a lack of biochemical knowledge of its metabolic networks. In this study, we investigated the CO2<\/jats:sub> fixation pathways (such as ko00710 and ko00720) most likely involved in the energy production and conversion of CO2<\/jats:sub> in Mtb<\/jats:italic>. Extensive pathway evaluation of 23 completely sequenced strains of Mtb<\/jats:italic> confirmed the existence of a complete list of genes encoding the relevant enzymes of the reductive tricarboxylic acid (rTCA) cycle. This provides the evidence that an rTCA cycle may function to fix CO2<\/jats:sub> in this bacterium. We also proposed that as CO2<\/jats:sub> is plentiful in the lungs, inhibition of CO2<\/jats:sub> fixation pathways (by targeting the relevant CO2<\/jats:sub> fixation enzymes) could be used in the expansion of new drugs against the dormant Mtb<\/jats:italic>. In support of the suggested hypothesis, the CO2<\/jats:sub> fixation enzymes were confirmed as a potential drug target by analyzing a number of attributes necessary to be a good bacterial target.<\/jats:p>","DOI":"10.1515\/jib-2017-0041","type":"journal-article","created":{"date-parts":[[2018,7,3]],"date-time":"2018-07-03T22:16:38Z","timestamp":1530656198000},"source":"Crossref","is-referenced-by-count":6,"title":["Identification of Missing Carbon Fixation Enzymes as Potential Drug Targets in Mycobacterium Tuberculosis<\/i>"],"prefix":"10.1515","volume":"15","author":[{"given":"Amit","family":"Katiyar","sequence":"first","affiliation":[{"name":"ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research , Ansari Nagar , New Delhi-110029 , India"},{"name":"Department of Biophysics, All India Institute of Medical Sciences , Ansari Nagar, New Delhi-110029 , India"}]},{"given":"Harpreet","family":"Singh","sequence":"additional","affiliation":[{"name":"ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research , Ansari Nagar , New Delhi-110029 , India"},{"name":"Division of Informatics Systems and Research Management, Indian Council of Medical Research , Ansari Nagar , New Delhi-110029 , India , Phone: +91-11-26589556, Fax: +91-11-26588662"}]},{"given":"Krishna Kant","family":"Azad","sequence":"additional","affiliation":[{"name":"Division of Informatics Systems and Research Management, Indian Council of Medical Research , Ansari Nagar , New Delhi-110029 , India"}]}],"member":"374","published-online":{"date-parts":[[2018,7,3]]},"reference":[{"key":"2023033119204008055_j_jib-2017-0041_ref_001_w2aab3b7b2b1b6b1ab1b6b1Aa","doi-asserted-by":"crossref","unstructured":"Alexander PE, De P. The emergence of extensively drug-resistant tuberculosis (TB): TB\/HIV coinfection, multidrug-resistant TB and the resulting public health threat from extensively drug-resistant TB, globally and in Canada. Can J Infect Dis Med Microbiol. 2007;18:289\u201391.18923728","DOI":"10.1155\/2007\/986794"},{"key":"2023033119204008055_j_jib-2017-0041_ref_002_w2aab3b7b2b1b6b1ab1b6b2Aa","doi-asserted-by":"crossref","unstructured":"Sethi S, Mewara A, Dhatwalia SK, Singh H, Yadav R, Singh K, et al. Prevalence of multidrug resistance in Mycobacterium tuberculosis isolates from HIV seropositive and seronegative patients with pulmonary tuberculosis in north India. BMC Infect Dis. 2013;13:137.2349716910.1186\/1471-2334-13-137","DOI":"10.1186\/1471-2334-13-137"},{"key":"2023033119204008055_j_jib-2017-0041_ref_003_w2aab3b7b2b1b6b1ab1b6b3Aa","doi-asserted-by":"crossref","unstructured":"Lee S, Lee SH, Mok JH, Lee SJ, Kim KH, Lee JE, et al. Is multi-drug resistant tuberculosis more prevalent in HIV-infected patients in korea? Yonsei Med J. 2016;57:1508\u201310.10.3349\/ymj.2016.57.6.150827593882","DOI":"10.3349\/ymj.2016.57.6.1508"},{"key":"2023033119204008055_j_jib-2017-0041_ref_004_w2aab3b7b2b1b6b1ab1b6b4Aa","doi-asserted-by":"crossref","unstructured":"Zacharia VM, Shiloh MU. Effect of carbon monoxide on Mycobacterium tuberculosis pathogenesis. Med Gas Res. 2012;2:30.2324463010.1186\/2045-9912-2-30","DOI":"10.1186\/2045-9912-2-30"},{"key":"2023033119204008055_j_jib-2017-0041_ref_005_w2aab3b7b2b1b6b1ab1b6b5Aa","doi-asserted-by":"crossref","unstructured":"Poole RK, Hughes MN. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol. 2000;36:775\u201383.1084466610.1046\/j.1365-2958.2000.01889.x","DOI":"10.1046\/j.1365-2958.2000.01889.x"},{"key":"2023033119204008055_j_jib-2017-0041_ref_006_w2aab3b7b2b1b6b1ab1b6b6Aa","doi-asserted-by":"crossref","unstructured":"Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science. 2003;302:1963\u20136.1467130310.1126\/science.1091176","DOI":"10.1126\/science.1091176"},{"key":"2023033119204008055_j_jib-2017-0041_ref_007_w2aab3b7b2b1b6b1ab1b6b7Aa","doi-asserted-by":"crossref","unstructured":"Darwin KH, Nathan CF. Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect Immun. 2005;73:4581\u20137.1604096910.1128\/IAI.73.8.4581-4587.2005","DOI":"10.1128\/IAI.73.8.4581-4587.2005"},{"key":"2023033119204008055_j_jib-2017-0041_ref_008_w2aab3b7b2b1b6b1ab1b6b8Aa","doi-asserted-by":"crossref","unstructured":"Shi S, Ehrt S. Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun. 2006;74:56\u201363.1636895710.1128\/IAI.74.1.56-63.2006","DOI":"10.1128\/IAI.74.1.56-63.2006"},{"key":"2023033119204008055_j_jib-2017-0041_ref_009_w2aab3b7b2b1b6b1ab1b6b9Aa","doi-asserted-by":"crossref","unstructured":"Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, et al. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe. 2011;9:21\u201331.10.1016\/j.chom.2010.12.00421238944","DOI":"10.1016\/j.chom.2010.12.004"},{"key":"2023033119204008055_j_jib-2017-0041_ref_010_w2aab3b7b2b1b6b1ab1b6c10Aa","doi-asserted-by":"crossref","unstructured":"da Silveira NJ, Bonalumi CE, Uchoa HB, Pereira JH, Canduri F, de Azevedo WF. DBMODELING: a database applied to the study of protein targets from genome projects. Cell Biochem Biophys. 2006;44:366\u201374.10.1385\/CBB:44:3:366","DOI":"10.1385\/CBB:44:3:366"},{"key":"2023033119204008055_j_jib-2017-0041_ref_011_w2aab3b7b2b1b6b1ab1b6c11Aa","doi-asserted-by":"crossref","unstructured":"Heberle G, de Azevedo WF Jr. Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem. 2011;18:1339\u201352.10.2174\/09298671179502957321366530","DOI":"10.2174\/092986711795029573"},{"key":"2023033119204008055_j_jib-2017-0041_ref_012_w2aab3b7b2b1b6b1ab1b6c12Aa","doi-asserted-by":"crossref","unstructured":"de Azevedo WF Jr. Protein targets for development of drugs against Mycobacterium tuberculosis. Curr Med Chem. 2011;18:1255\u20137.10.2174\/09298671179502956421366537","DOI":"10.2174\/092986711795029564"},{"key":"2023033119204008055_j_jib-2017-0041_ref_013_w2aab3b7b2b1b6b1ab1b6c13Aa","doi-asserted-by":"crossref","unstructured":"Gokhale K, Tilak B. Mechanisms of bacterial acetohydroxyacid synthase (AHAS) and specific inhibitors of Mycobacterium tuberculosis AHAS as potential drug candidates against tuberculosis. Curr Drug Targets. 2015;16:689\u201399.10.2174\/138945011666615041611554725882218","DOI":"10.2174\/1389450116666150416115547"},{"key":"2023033119204008055_j_jib-2017-0041_ref_014_w2aab3b7b2b1b6b1ab1b6c14Aa","doi-asserted-by":"crossref","unstructured":"Sharma R, Kaur A, Sharma AK, Dilbaghi N, Sharma AK. Nano-based anti-tubercular drug delivery and therapeutic interventions in tuberculosis. Curr Drug Targets. 2017;18:72\u201386.26240053","DOI":"10.2174\/1389450116666150804110238"},{"key":"2023033119204008055_j_jib-2017-0041_ref_015_w2aab3b7b2b1b6b1ab1b6c15Aa","doi-asserted-by":"crossref","unstructured":"Singh G, Kumar A, Maan P, Kaur J. Cell wall associated factors of Mycobacterium tuberculosis as major virulence determinants: current perspectives in drugs discovery and design. Curr Drug Targets. 2017;18:1904\u201318.28699515","DOI":"10.2174\/1389450118666170711150034"},{"key":"2023033119204008055_j_jib-2017-0041_ref_016_w2aab3b7b2b1b6b1ab1b6c16Aa","doi-asserted-by":"crossref","unstructured":"Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, et al. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS One 2008;3:e1403.10.1371\/journal.pone.000140318167562","DOI":"10.1371\/journal.pone.0001403"},{"key":"2023033119204008055_j_jib-2017-0041_ref_017_w2aab3b7b2b1b6b1ab1b6c17Aa","doi-asserted-by":"crossref","unstructured":"Waddell SJ, Butcher PD. Microarray analysis of whole genome expression of intracellular Mycobacterium tuberculosis. Curr Mol Med. 2007;7:287\u201396.1750411310.2174\/156652407780598548","DOI":"10.2174\/156652407780598548"},{"key":"2023033119204008055_j_jib-2017-0041_ref_018_w2aab3b7b2b1b6b1ab1b6c18Aa","doi-asserted-by":"crossref","unstructured":"Voskuil MI, Visconti KC, Schoolnik GK. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb). 2004;84:218\u201327.10.1016\/j.tube.2004.02.00315207491","DOI":"10.1016\/j.tube.2004.02.003"},{"key":"2023033119204008055_j_jib-2017-0041_ref_019_w2aab3b7b2b1b6b1ab1b6c19Aa","doi-asserted-by":"crossref","unstructured":"Boon C, Dick T. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later. Future Microbiol. 2012;7:513\u20138.2243972710.2217\/fmb.12.14","DOI":"10.2217\/fmb.12.14"},{"key":"2023033119204008055_j_jib-2017-0041_ref_020_w2aab3b7b2b1b6b1ab1b6c20Aa","doi-asserted-by":"crossref","unstructured":"Desmard M, Davidge KS, Bouvet O, Morin D, Roux D, Foresti R, et al. A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. FASEB J. 2009;23:1023\u201331.10.1096\/fj.08-122804","DOI":"10.1096\/fj.08-122804"},{"key":"2023033119204008055_j_jib-2017-0041_ref_021_w2aab3b7b2b1b6b1ab1b6c21Aa","doi-asserted-by":"crossref","unstructured":"Nobre LS, Al-Shahrour F, Dopazo J, Saraiva LM. Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli. Microbiology. 2009;155(Pt 3):813\u201324.1924675210.1099\/mic.0.023911-0","DOI":"10.1099\/mic.0.023911-0"},{"key":"2023033119204008055_j_jib-2017-0041_ref_022_w2aab3b7b2b1b6b1ab1b6c22Aa","doi-asserted-by":"crossref","unstructured":"Schaefer WB, Cohn ML, Middlebrook G. The roles of biotin and carbon dioxide in the cultivation of Mycobacterium tuberculosis. J Bacteriol. 1955;69:706\u201312.14392131","DOI":"10.1128\/jb.69.6.706-712.1955"},{"key":"2023033119204008055_j_jib-2017-0041_ref_023_w2aab3b7b2b1b6b1ab1b6c23Aa","doi-asserted-by":"crossref","unstructured":"Nishihara H. Studies on the metabolism of the tubercule bacillus with the use of radioactive substrates in the presence and absence of streptomycin. J Biochem. 1954;41:167\u201381.10.1093\/oxfordjournals.jbchem.a126427","DOI":"10.1093\/oxfordjournals.jbchem.a126427"},{"key":"2023033119204008055_j_jib-2017-0041_ref_024_w2aab3b7b2b1b6b1ab1b6c24Aa","unstructured":"Long ER, Anderson RJ, Rittenberg D, Karnovsky ML, Henderson HJ. The carbon metabolism of the tubercule bacillus. Am Rev Tuberc. 1955;71:609\u201315."},{"key":"2023033119204008055_j_jib-2017-0041_ref_025_w2aab3b7b2b1b6b1ab1b6c25Aa","doi-asserted-by":"crossref","unstructured":"Beste DJ, Bonde B, Hawkins N, Ward JL, Beale MH, Noack S, et al. 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog. 2011;7:e1002091.10.1371\/journal.ppat.1002091","DOI":"10.1371\/journal.ppat.1002091"},{"key":"2023033119204008055_j_jib-2017-0041_ref_026_w2aab3b7b2b1b6b1ab1b6c26Aa","doi-asserted-by":"crossref","unstructured":"Beste DJ, Noh K, Niedenfuhr S, Mendum TA, Hawkins ND, Ward JL, et al. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol. 2013;20:1012\u201321.2391158710.1016\/j.chembiol.2013.06.012","DOI":"10.1016\/j.chembiol.2013.06.012"},{"key":"2023033119204008055_j_jib-2017-0041_ref_027_w2aab3b7b2b1b6b1ab1b6c27Aa","doi-asserted-by":"crossref","unstructured":"Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA. 2007;104:1947\u201352.10.1073\/pnas.0605728104","DOI":"10.1073\/pnas.0605728104"},{"key":"2023033119204008055_j_jib-2017-0041_ref_028_w2aab3b7b2b1b6b1ab1b6c28Aa","doi-asserted-by":"crossref","unstructured":"Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hugler M, et al. Autotrophic carbon fixation in archaea. Nat Rev Microbiol. 2010;8:447\u201360.10.1038\/nrmicro236520453874","DOI":"10.1038\/nrmicro2365"},{"key":"2023033119204008055_j_jib-2017-0041_ref_029_w2aab3b7b2b1b6b1ab1b6c29Aa","doi-asserted-by":"crossref","unstructured":"Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537\u201344.10.1038\/311599634230","DOI":"10.1038\/31159"},{"key":"2023033119204008055_j_jib-2017-0041_ref_030_w2aab3b7b2b1b6b1ab1b6c30Aa","doi-asserted-by":"crossref","unstructured":"Park SW, Hwang EH, Park H, Kim JA, Heo J, Lee KH, et al. Growth of mycobacteria on carbon monoxide and methanol. J Bacteriol. 2003;185:142\u20137.10.1128\/JB.185.1.142-147.200312486050","DOI":"10.1128\/JB.185.1.142-147.2003"},{"key":"2023033119204008055_j_jib-2017-0041_ref_031_w2aab3b7b2b1b6b1ab1b6c31Aa","doi-asserted-by":"crossref","unstructured":"Srinivasan V, Morowitz HJ. Ancient genes in contemporary persistent microbial pathogens. Biol Bull. 2006;210:1\u20139.10.2307\/413453116501059","DOI":"10.2307\/4134531"},{"key":"2023033119204008055_j_jib-2017-0041_ref_032_w2aab3b7b2b1b6b1ab1b6c32Aa","doi-asserted-by":"crossref","unstructured":"Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403\u201310.223171210.1016\/S0022-2836(05)80360-2","DOI":"10.1016\/S0022-2836(05)80360-2"},{"key":"2023033119204008055_j_jib-2017-0041_ref_033_w2aab3b7b2b1b6b1ab1b6c33Aa","doi-asserted-by":"crossref","unstructured":"Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182\u20135.1752652210.1093\/nar\/gkm321","DOI":"10.1093\/nar\/gkm321"},{"key":"2023033119204008055_j_jib-2017-0041_ref_034_w2aab3b7b2b1b6b1ab1b6c34Aa","doi-asserted-by":"crossref","unstructured":"Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222\u201330.2428837110.1093\/nar\/gkt1223","DOI":"10.1093\/nar\/gkt1223"},{"key":"2023033119204008055_j_jib-2017-0041_ref_035_w2aab3b7b2b1b6b1ab1b6c35Aa","doi-asserted-by":"crossref","unstructured":"Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25\u20139.1080265110.1038\/75556","DOI":"10.1038\/75556"},{"key":"2023033119204008055_j_jib-2017-0041_ref_036_w2aab3b7b2b1b6b1ab1b6c36Aa","doi-asserted-by":"crossref","unstructured":"Magarinos MP, Carmona SJ, Crowther GJ, Ralph SA, Roos DS, Shanmugam D, et al. TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res. 2012;40:D1118\u201327.2211606410.1093\/nar\/gkr1053","DOI":"10.1093\/nar\/gkr1053"},{"key":"2023033119204008055_j_jib-2017-0041_ref_037_w2aab3b7b2b1b6b1ab1b6c37Aa","doi-asserted-by":"crossref","unstructured":"Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236\u201340.2445162610.1093\/bioinformatics\/btu031","DOI":"10.1093\/bioinformatics\/btu031"},{"key":"2023033119204008055_j_jib-2017-0041_ref_038_w2aab3b7b2b1b6b1ab1b6c38Aa","doi-asserted-by":"crossref","unstructured":"Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668\u201372.10.1093\/nar\/gkj06716381955","DOI":"10.1093\/nar\/gkj067"},{"key":"2023033119204008055_j_jib-2017-0041_ref_039_w2aab3b7b2b1b6b1ab1b6c39Aa","doi-asserted-by":"crossref","unstructured":"Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901\u20136.10.1093\/nar\/gkm95818048412","DOI":"10.1093\/nar\/gkm958"},{"key":"2023033119204008055_j_jib-2017-0041_ref_040_w2aab3b7b2b1b6b1ab1b6c40Aa","doi-asserted-by":"crossref","unstructured":"Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for \u2018omics\u2019 research on drugs. Nucleic Acids Res. 2011;39:D1035\u201341.10.1093\/nar\/gkq1126","DOI":"10.1093\/nar\/gkq1126"},{"key":"2023033119204008055_j_jib-2017-0041_ref_041_w2aab3b7b2b1b6b1ab1b6c41Aa","doi-asserted-by":"crossref","unstructured":"Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42:D1091\u20137.2420371110.1093\/nar\/gkt1068","DOI":"10.1093\/nar\/gkt1068"},{"key":"2023033119204008055_j_jib-2017-0041_ref_042_w2aab3b7b2b1b6b1ab1b6c42Aa","doi-asserted-by":"crossref","unstructured":"Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y. The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch Microbiol. 1985;141:198\u2013203.10.1007\/BF00408058","DOI":"10.1007\/BF00408058"},{"key":"2023033119204008055_j_jib-2017-0041_ref_043_w2aab3b7b2b1b6b1ab1b6c43Aa","doi-asserted-by":"crossref","unstructured":"Schauder R, Widdel F, Fuchs G. Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol. 1987;148:218\u201325.10.1007\/BF00414815","DOI":"10.1007\/BF00414815"},{"key":"2023033119204008055_j_jib-2017-0041_ref_044_w2aab3b7b2b1b6b1ab1b6c44Aa","doi-asserted-by":"crossref","unstructured":"Siebers B, Tjaden B, Michalke K, Dorr C, Ahmed H, Zaparty M, et al. Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol. 2004;186;2179\u201394.10.1128\/JB.186.7.2179-2194.200415028704","DOI":"10.1128\/JB.186.7.2179-2194.2004"},{"key":"2023033119204008055_j_jib-2017-0041_ref_045_w2aab3b7b2b1b6b1ab1b6c45Aa","doi-asserted-by":"crossref","unstructured":"Yamamoto M, Arai H, Ishii M, Igarashi Y. Characterization of two different 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6. Biochem Biophys Res Commun. 2003;312:1297\u2013302.10.1016\/j.bbrc.2003.11.07814652015","DOI":"10.1016\/j.bbrc.2003.11.078"},{"key":"2023033119204008055_j_jib-2017-0041_ref_046_w2aab3b7b2b1b6b1ab1b6c46Aa","doi-asserted-by":"crossref","unstructured":"Yamamoto M, Arai H, Ishii M, Igarashi Y. Role of two 2-oxoglutarate:ferredoxin oxidoreductases in Hydrogenobacter thermophilus under aerobic and anaerobic conditions. FEMS Microbiol Lett. 2006;263:189\u201393.1697835510.1111\/j.1574-6968.2006.00415.x","DOI":"10.1111\/j.1574-6968.2006.00415.x"},{"key":"2023033119204008055_j_jib-2017-0041_ref_047_w2aab3b7b2b1b6b1ab1b6c47Aa","doi-asserted-by":"crossref","unstructured":"Yamamoto M, Ikeda T, Arai H, Ishii M, Igarashi Y. Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles. 2010;14:79\u201385.10.1007\/s00792-009-0289-419894084","DOI":"10.1007\/s00792-009-0289-4"},{"key":"2023033119204008055_j_jib-2017-0041_ref_048_w2aab3b7b2b1b6b1ab1b6c48Aa","doi-asserted-by":"crossref","unstructured":"Banerjee S, Nandyala A, Podili R, Katoch VM, Hasnain SE. Comparison of Mycobacterium tuberculosis isocitrate dehydrogenases (ICD-1 and ICD-2) reveal differences in coenzyme affinity, oligomeric state, pH tolerance and phylogenetic affiliation. BMC Biochemistry. 2005;6:20.10.1186\/1471-2091-6-20","DOI":"10.1186\/1471-2091-6-20"},{"key":"2023033119204008055_j_jib-2017-0041_ref_049_w2aab3b7b2b1b6b1ab1b6c49Aa","doi-asserted-by":"crossref","unstructured":"Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE 3rd, Boshoff HI. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 2011;7:e1002287.2199858510.1371\/journal.ppat.1002287","DOI":"10.1371\/journal.ppat.1002287"},{"key":"2023033119204008055_j_jib-2017-0041_ref_050_w2aab3b7b2b1b6b1ab1b6c50Aa","doi-asserted-by":"crossref","unstructured":"Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe. 2008;3:323\u201330.10.1016\/j.chom.2008.03.00718474359","DOI":"10.1016\/j.chom.2008.03.007"},{"key":"2023033119204008055_j_jib-2017-0041_ref_051_w2aab3b7b2b1b6b1ab1b6c51Aa","doi-asserted-by":"crossref","unstructured":"Terstappen GC, Reggiani A. In-silico research in drug discovery. Trends Pharmacol In Sci. 2001;22:23\u20136.10.1016\/S0165-6147(00)01584-4","DOI":"10.1016\/S0165-6147(00)01584-4"},{"key":"2023033119204008055_j_jib-2017-0041_ref_052_w2aab3b7b2b1b6b1ab1b6c52Aa","unstructured":"Freiberg C, Wieland B, Spaltmann F, Ehlert K, Brotz H, Labischinski H. Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J Mol Microbiol Biotechnol. 2001;3:483\u20139.11361082"},{"key":"2023033119204008055_j_jib-2017-0041_ref_053_w2aab3b7b2b1b6b1ab1b6c53Aa","doi-asserted-by":"crossref","unstructured":"Murphy DJ, Brown JR. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis. 2007;7:84.10.1186\/1471-2334-7-8417655757","DOI":"10.1186\/1471-2334-7-84"},{"key":"2023033119204008055_j_jib-2017-0041_ref_054_w2aab3b7b2b1b6b1ab1b6c54Aa","doi-asserted-by":"crossref","unstructured":"Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 2004;14:917\u201324.10.1101\/gr.205030415078855","DOI":"10.1101\/gr.2050304"},{"key":"2023033119204008055_j_jib-2017-0041_ref_055_w2aab3b7b2b1b6b1ab1b6c55Aa","doi-asserted-by":"crossref","unstructured":"Andersen P, Askgaard D, Ljungquist L, Bennedsen J, Heron I. Proteins released from Mycobacterium tuberculosis during Growth. Infect Immun. 1991;59:1905\u201310.1903768","DOI":"10.1128\/iai.59.6.1905-1910.1991"},{"key":"2023033119204008055_j_jib-2017-0041_ref_056_w2aab3b7b2b1b6b1ab1b6c56Aa","doi-asserted-by":"crossref","unstructured":"Ohman R, Ridell M. Purification and characterisation of isocitrate dehydrogenase and malate dehydrogenase from Mycobacterium tuberculosis and evaluation of their potential as suitable antigens for the serodiagnosis of tuberculosis. Tuberc Lung Dis. 1996;77:454\u201361.10.1016\/S0962-8479(96)90120-3","DOI":"10.1016\/S0962-8479(96)90120-3"},{"key":"2023033119204008055_j_jib-2017-0041_ref_057_w2aab3b7b2b1b6b1ab1b6c57Aa","doi-asserted-by":"crossref","unstructured":"Florio W, Bottai D, Batoni G, Esin S, Pardini M, Maisetta G, et al. Identification, molecular cloning, and evaluation of potential use of isocitrate dehydrogenase II of Mycobacterium bovis BCG in serodiagnosis of tuberculosis. Clin Diagn Lab Immunol. 2002;9:846\u201351.12093684","DOI":"10.1128\/CDLI.9.4.846-851.2002"}],"container-title":["Journal of Integrative Bioinformatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.degruyter.com\/view\/j\/jib.2018.15.issue-3\/jib-2017-0041\/jib-2017-0041.xml","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2017-0041\/xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2017-0041\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T06:22:56Z","timestamp":1680330176000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/jib-2017-0041\/html"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7,3]]},"references-count":57,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2018,8,7]]},"published-print":{"date-parts":[[2018,9,25]]}},"alternative-id":["10.1515\/jib-2017-0041"],"URL":"https:\/\/doi.org\/10.1515\/jib-2017-0041","relation":{},"ISSN":["1613-4516"],"issn-type":[{"value":"1613-4516","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,7,3]]}}}