{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,19]],"date-time":"2024-01-19T00:15:58Z","timestamp":1705623358302},"reference-count":12,"publisher":"Walter de Gruyter GmbH","issue":"12","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023,12,27]]},"abstract":"Abstract<\/jats:title>\n The phase-out of nuclear and coal-based electricity production and their replacement by power-electronics based renewable energy sources, especially in Germany, leads to more and faster power system dynamics. Anyway, not all European countries plan to abandon bulk power generation, so there will still be a mix of inverter-based sources and synchronous machines in the future, justifying the necessity of rotor angle stability analysis. This task grows with the number of assets. It requires to numerically solve a large set of ordinary differential equations which gets more and more challenging to do in real-time during contingency analysis in power system operation. Therefore, this paper introduces a new approach to quickly estimate the transient stability of rotor angles without the need of solving differential equations. It is based on a linearized system description, some assumptions on the rotor angle displacement and uses the fault location and duration as parameters. It is proven, that this approach can be used to reduce the number of contingencies which need to be analyzed in detail during system operation and therefore helps transmission system operators to keep the power system stable and secure.<\/jats:p>","DOI":"10.1515\/auto-2023-0164","type":"journal-article","created":{"date-parts":[[2023,11,25]],"date-time":"2023-11-25T06:42:35Z","timestamp":1700894555000},"page":"1018-1027","source":"Crossref","is-referenced-by-count":0,"title":["Eigenvalue-curve approach for fast assessment of rotor angle transient stability"],"prefix":"10.1515","volume":"71","author":[{"given":"Martin","family":"Wolter","sequence":"first","affiliation":[{"name":"Otto-von-Guericke University Magdeburg , Magdeburg , Germany"}]},{"given":"Eric","family":"Glende","sequence":"additional","affiliation":[{"name":"Otto-von-Guericke University Magdeburg , Magdeburg , Germany"}]}],"member":"374","published-online":{"date-parts":[[2023,11,27]]},"reference":[{"key":"2024011813223789502_j_auto-2023-0164_ref_001","unstructured":"Bundesamt f\u00fcr die Sicherheit der nuklearen Entsorgung, Der Atomausstieg in Deutschland, 2023 [online], Available at: https:\/\/www.base.bund.de\/DE\/themen\/kt\/ausstieg-atomkraft\/ausstieg_node.html."},{"key":"2024011813223789502_j_auto-2023-0164_ref_002","unstructured":"Bundesministerium f\u00fcr Wirtschaft und Klimaschutz, Gesetz zur Reduzierung und zur Beendigung der Kohleverstromung und zur \u00c4nderung weiterer Gesetze (Kohleausstiegsgesetz), 2020 [online], Available at: https:\/\/www.bmwk.de\/Redaktion\/DE\/Artikel\/Service\/kohleausstiegsgesetz.html."},{"key":"2024011813223789502_j_auto-2023-0164_ref_003","unstructured":"Bundesministerium f\u00fcr Wirtschaft und Klimaschutz, \u00dcberblickspapier Osterpaket, 2022 [online], Available at: https:\/\/www.bmwk.de\/Redaktion\/DE\/Downloads\/Energie\/0406_ueberblickspapier_osterpaket.html."},{"key":"2024011813223789502_j_auto-2023-0164_ref_004","doi-asserted-by":"crossref","unstructured":"R. Ghosh, N. R. Tummuru, B. S. Rajpurohit, and A. Monti, \u201cVirtual inertia from renewable energy sources: mathematical representation and control strategy,\u201d in 2020 IEEE International Conference on Power Electron-ics, Cochin, India, Smart Grid and Renewable Energy (PESGRE2020), 2020, pp.\u00a01\u20136.","DOI":"10.1109\/PESGRE45664.2020.9070733"},{"key":"2024011813223789502_j_auto-2023-0164_ref_005","doi-asserted-by":"crossref","unstructured":"S. Reineke, D. Turschner, I. Hauer, and H.-P. Beck, \u201cVerification of the uninterrupted transition from grid parallel to island grid operation of the Virtual Synchronous Machine in a microgrid,\u201d in 21th International Conference on Renewable Energies and Power Quality (ICREPQ\u201923), Madrid, Spain, 2023.","DOI":"10.24084\/repqj21.236"},{"key":"2024011813223789502_j_auto-2023-0164_ref_006","doi-asserted-by":"crossref","unstructured":"Z. Huang, R. Diao, S. Jin, and Y. Chen, \u201cPredictive dynamic security assessment through advanced computing,\u201d in 2014 IEEE PES General Meeting, 2014.","DOI":"10.1109\/PESGM.2014.6938850"},{"key":"2024011813223789502_j_auto-2023-0164_ref_007","doi-asserted-by":"crossref","unstructured":"R. Schainker, P. Miller, W. Dubbelday, P. Hirsch, and G. Zhang, \u201cReal-time dynamic security assessment: fast simulation and modeling applied to emergency outage security of the electric grid,\u201d IEEE Power Energy Mag., vol.\u00a04, no.\u00a02, pp.\u00a051\u201358, 2006. https:\/\/doi.org\/10.1109\/mpae.2006.1597996.","DOI":"10.1109\/MPAE.2006.1597996"},{"key":"2024011813223789502_j_auto-2023-0164_ref_008","doi-asserted-by":"crossref","unstructured":"Y. Zeng, P. Zhang, M. Wang, H. Jia, Y. Yu, and S. T. Lee, \u201cDevelopment of a new tool for dynamic security assessment using dynamic security region,\u201d in 2006 IEEE International Conference on Power System Technology, 2006.","DOI":"10.1109\/ICPST.2006.321756"},{"key":"2024011813223789502_j_auto-2023-0164_ref_009","doi-asserted-by":"crossref","unstructured":"S. Datta and V. Vittal, \u201cA diagnostics tool for risk-based dynamic security assessment of renewable generation,\u201d in 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 2018.","DOI":"10.1109\/PMAPS.2018.8440550"},{"key":"2024011813223789502_j_auto-2023-0164_ref_010","doi-asserted-by":"crossref","unstructured":"A. al-Masri, M. Z. A. Ab-Kadir, H. Hizam, J. Jasni, and N. Mariun, \u201cTransient security assessment for power system stability: a review on artificial intelligence approach,\u201d in 2009 IEEE Student Conference on Research and Development (SCOReD), 2009.","DOI":"10.1109\/SCORED.2009.5442996"},{"key":"2024011813223789502_j_auto-2023-0164_ref_011","unstructured":"M. Wolter, Lecture Script Power Network Planning and Operation, 2020 [online], Available at: https:\/\/www.lena.ovgu.de\/lena_media\/Dokumente+und+Skripte\/Skript_PNP.pdf."},{"key":"2024011813223789502_j_auto-2023-0164_ref_012","doi-asserted-by":"crossref","unstructured":"N. Hatziargyriou, J. Milanovic, C. Rahmann, et al.., \u201cDefinition and classification of power system stability \u2013 revisited & extended,\u201d IEEE Trans. Power Syst., vol.\u00a036, no.\u00a04, pp.\u00a03271\u20133281, 2021. https:\/\/doi.org\/10.1109\/TPWRS.2020.3041774.","DOI":"10.1109\/TPWRS.2020.3041774"}],"container-title":["at - Automatisierungstechnik"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/auto-2023-0164\/xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/auto-2023-0164\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,18]],"date-time":"2024-01-18T13:22:48Z","timestamp":1705584168000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.degruyter.com\/document\/doi\/10.1515\/auto-2023-0164\/html"}},"subtitle":["Schnelle Absch\u00e4tzung der Rotorwinkelstabilit\u00e4t anhand von Eigenwertkurven"],"short-title":[],"issued":{"date-parts":[[2023,11,27]]},"references-count":12,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2023,11,27]]},"published-print":{"date-parts":[[2023,12,27]]}},"alternative-id":["10.1515\/auto-2023-0164"],"URL":"https:\/\/doi.org\/10.1515\/auto-2023-0164","relation":{},"ISSN":["0178-2312","2196-677X"],"issn-type":[{"value":"0178-2312","type":"print"},{"value":"2196-677X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,11,27]]}}}