{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,4]],"date-time":"2025-04-04T02:06:23Z","timestamp":1743732383335},"reference-count":71,"publisher":"Association for Computing Machinery (ACM)","issue":"10","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Proc. VLDB Endow."],"published-print":{"date-parts":[[2022,6]]},"abstract":"We propose Hercules, a parallel tree-based technique for exact similarity search on massive disk-based data series collections. We present novel index construction and query answering algorithms that leverage different summarization techniques, carefully schedule costly operations, optimize memory and disk accesses, and exploit the multi-threading and SIMD capabilities of modern hardware to perform CPU-intensive calculations. We demonstrate the superiority and robustness of Hercules with an extensive experimental evaluation against state-of-the-art techniques, using many synthetic and real datasets, and query workloads of varying difficulty. The results show that Hercules performs up to one order of magnitude faster than the best competitor (which is not always the same). Moreover, Hercules is the only index that outperforms the optimized scan on all scenarios, including the hard query workloads on disk-based datasets.<\/jats:p>","DOI":"10.14778\/3547305.3547308","type":"journal-article","created":{"date-parts":[[2022,9,7]],"date-time":"2022-09-07T16:09:53Z","timestamp":1662566993000},"page":"2005-2018","source":"Crossref","is-referenced-by-count":14,"title":["Hercules against data series similarity search"],"prefix":"10.14778","volume":"15","author":[{"given":"Karima","family":"Echihabi","sequence":"first","affiliation":[{"name":"Mohammed VI Polytech. Univ."}]},{"given":"Panagiota","family":"Fatourou","sequence":"additional","affiliation":[{"name":"Universit\u00e9 Paris Cit\u00e9 & FORTH"}]},{"given":"Kostas","family":"Zoumpatianos","sequence":"additional","affiliation":[{"name":"Snowflake Inc."}]},{"given":"Themis","family":"Palpanas","sequence":"additional","affiliation":[{"name":"Universit\u00e9 Paris Cit\u00e9 & IUF"}]},{"given":"Houda","family":"Benbrahim","sequence":"additional","affiliation":[{"name":"IRDA"}]}],"member":"320","published-online":{"date-parts":[[2022,9,7]]},"reference":[{"key":"e_1_2_1_1_1","unstructured":"2018. Lernaean Hydra Archive. http:\/\/www.mi.parisdescartes.fr\/~themisp\/dsseval\/. 2018. Lernaean Hydra Archive. http:\/\/www.mi.parisdescartes.fr\/~themisp\/dsseval\/."},{"key":"e_1_2_1_2_1","unstructured":"2019. Faiss. https:\/\/github.com\/facebookresearch\/faiss\/. 2019. Faiss. https:\/\/github.com\/facebookresearch\/faiss\/."},{"key":"e_1_2_1_3_1","unstructured":"2019. Return of Lernaean Hydra Archive. http:\/\/www.mi.parisdescartes.fr\/~themisp\/dsseval2\/. 2019. Return of Lernaean Hydra Archive. http:\/\/www.mi.parisdescartes.fr\/~themisp\/dsseval2\/."},{"key":"e_1_2_1_4_1","unstructured":"2022. Hercules Archive. http:\/\/www.mi.parisdescartes.fr\/~themisp\/hercules\/. 2022. Hercules Archive. http:\/\/www.mi.parisdescartes.fr\/~themisp\/hercules\/."},{"key":"e_1_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1002\/we.2057"},{"key":"e_1_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.4230\/DagRep.9.7.24"},{"key":"e_1_2_1_7_1","doi-asserted-by":"crossref","unstructured":"Norbert Beckmann Hans-Peter Kriegel Ralf Schneider and Bernhard Seeger. 1990. The R*-tree: an efficient and robust access method for points and rectangles. In SIGMOD. 322--331. Norbert Beckmann Hans-Peter Kriegel Ralf Schneider and Bernhard Seeger. 1990. The R * -tree: an efficient and robust access method for points and rectangles. In SIGMOD. 322--331.","DOI":"10.1145\/93605.98741"},{"key":"e_1_2_1_8_1","doi-asserted-by":"crossref","unstructured":"Paul Boniol Mohammed Meftah Emmanuel Remy and Themis Palpanas. 2022. dCAM: Dimension-wise Activation Map for Explaining Multivariate Data Series Classification. In SIGMOD. Paul Boniol Mohammed Meftah Emmanuel Remy and Themis Palpanas. 2022. dCAM: Dimension-wise Activation Map for Explaining Multivariate Data Series Classification. In SIGMOD.","DOI":"10.1145\/3514221.3526183"},{"key":"e_1_2_1_9_1","volume-title":"ICDM 2010, The 10th IEEE International Conference on Data Mining. 58--67","author":"Camerra Alessandro","unstructured":"Alessandro Camerra , Themis Palpanas , Jin Shieh , and Eamonn J. Keogh . 2010. iSAX 2.0: Indexing and Mining One Billion Time Series . In ICDM 2010, The 10th IEEE International Conference on Data Mining. 58--67 . Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh. 2010. iSAX 2.0: Indexing and Mining One Billion Time Series. In ICDM 2010, The 10th IEEE International Conference on Data Mining. 58--67."},{"key":"e_1_2_1_10_1","volume-title":"Beyond One Billion Time Series: Indexing and Mining Very Large Time Series Collections with iSAX2+. KAIS 39, 1","author":"Camerra Alessandro","year":"2014","unstructured":"Alessandro Camerra , Jin Shieh , Themis Palpanas , Thanawin Rakthanmanon , and Eamonn Keogh . 2014. Beyond One Billion Time Series: Indexing and Mining Very Large Time Series Collections with iSAX2+. KAIS 39, 1 ( 2014 ). Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and Eamonn Keogh. 2014. Beyond One Billion Time Series: Indexing and Mining Very Large Time Series Collections with iSAX2+. KAIS 39, 1 (2014)."},{"key":"e_1_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/568518.568520"},{"key":"e_1_2_1_12_1","volume-title":"Proceedings of the 24th International Conference on Extending Database Technology, EDBT 2021","author":"Chatzigeorgakidis Georgios","year":"2021","unstructured":"Georgios Chatzigeorgakidis , Dimitrios Skoutas , Kostas Patroumpas , Themis Palpanas , Spiros Athanasiou , and Spiros Skiadopoulos . 2021 . Twin Subsequence Search in Time Series . In Proceedings of the 24th International Conference on Extending Database Technology, EDBT 2021 , Nicosia, Cyprus, March 23 - 26 , 2021. 475--480. Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis Palpanas, Spiros Athanasiou, and Spiros Skiadopoulos. 2021. Twin Subsequence Search in Time Series. In Proceedings of the 24th International Conference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021. 475--480."},{"key":"e_1_2_1_13_1","volume-title":"Efficient Range and kNN Twin Subsequence Search in Time Series. TKDE","author":"Chatzigeorgakidis Georgios","year":"2022","unstructured":"Georgios Chatzigeorgakidis , Dimitrios Skoutas , Kostas Patroumpas , Themis Palpanas , Spiros Athanasiou , and Spiros Skiadopoulos . 2022. Efficient Range and kNN Twin Subsequence Search in Time Series. TKDE ( 2022 ). Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis Palpanas, Spiros Athanasiou, and Spiros Skiadopoulos. 2022. Efficient Range and kNN Twin Subsequence Search in Time Series. TKDE (2022)."},{"key":"e_1_2_1_14_1","volume-title":"Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB'97)","author":"Ciaccia Paolo","year":"1997","unstructured":"Paolo Ciaccia , Marco Patella , and Pavel Zezula . 1997 . M-tree: An Efficient Access Method for Similarity Search in Metric Spaces . In Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB'97) , Matthias Jarke, Michael Carey, Klaus R. Dittrich, Fred Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld (Eds.). Morgan Kaufmann Publishers, Inc., Athens, Greece, 426--435. Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. In Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB'97), Matthias Jarke, Michael Carey, Klaus R. Dittrich, Fred Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld (Eds.). Morgan Kaufmann Publishers, Inc., Athens, Greece, 426--435."},{"key":"e_1_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/3318464.3384402"},{"key":"e_1_2_1_16_1","volume-title":"Big Sequence Management: on Scalability (tutorial)","author":"Echihabi Karima","unstructured":"Karima Echihabi , Kostas Zoumpatianos , and Themis Palpanas . 2020. Big Sequence Management: on Scalability (tutorial) . In IEEE BigData . Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2020. Big Sequence Management: on Scalability (tutorial). In IEEE BigData."},{"key":"e_1_2_1_17_1","doi-asserted-by":"crossref","unstructured":"Karima Echihabi Kostas Zoumpatianos and Themis Palpanas. 2020. Scalable Machine Learning on High-Dimensional Vectors: From Data Series to Deep Network Embeddings. In WIMS. Karima Echihabi Kostas Zoumpatianos and Themis Palpanas. 2020. Scalable Machine Learning on High-Dimensional Vectors: From Data Series to Deep Network Embeddings. In WIMS.","DOI":"10.1145\/3405962.3405989"},{"key":"e_1_2_1_18_1","unstructured":"Karima Echihabi Kostas Zoumpatianos and Themis Palpanas. 2021. Big Sequence Management: Scaling Up and Out (tutorial). In EDBT. Karima Echihabi Kostas Zoumpatianos and Themis Palpanas. 2021. Big Sequence Management: Scaling Up and Out (tutorial). In EDBT."},{"key":"e_1_2_1_19_1","doi-asserted-by":"crossref","unstructured":"Karima Echihabi Kostas Zoumpatianos and Themis Palpanas. 2021. High-Dimensional Similarity Search for Scalable Data Science (tutorial). In ICDE. Karima Echihabi Kostas Zoumpatianos and Themis Palpanas. 2021. High-Dimensional Similarity Search for Scalable Data Science (tutorial). In ICDE.","DOI":"10.1109\/ICDE51399.2021.00268"},{"key":"e_1_2_1_20_1","doi-asserted-by":"crossref","unstructured":"Karima Echihabi Kostas Zoumpatianos and Themis Palpanas. 2021. New Trends in High-D Vector Similarity Search: AI-driven Progressive and Distributed (tutorial). In VLDB. Karima Echihabi Kostas Zoumpatianos and Themis Palpanas. 2021. New Trends in High-D Vector Similarity Search: AI-driven Progressive and Distributed (tutorial). In VLDB.","DOI":"10.14778\/3476311.3476407"},{"key":"e_1_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.14778\/3282495.3282498"},{"key":"e_1_2_1_22_1","first-page":"402","article-title":"Return of the Lernaean Hydra: Experimental Evaluation of Data Series Approximate Similarity Search","volume":"13","author":"Echihabi Karima","year":"2019","unstructured":"Karima Echihabi , Kostas Zoumpatianos , Themis Palpanas , and Houda Benbrahim . 2019 . Return of the Lernaean Hydra: Experimental Evaluation of Data Series Approximate Similarity Search . PVLDB 13 , 3 (2019), 402 -- 419 . Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim. 2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series Approximate Similarity Search. PVLDB 13, 3 (2019), 402--419.","journal-title":"PVLDB"},{"key":"e_1_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1145\/191839.191925"},{"key":"e_1_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/354756.354820"},{"key":"e_1_2_1_25_1","unstructured":"Incorporated Research Institutions for Seismology with Artificial Intelligence. 2018. Seismic Data Access. http:\/\/ds.iris.edu\/data\/access\/. Incorporated Research Institutions for Seismology with Artificial Intelligence. 2018. Seismic Data Access. http:\/\/ds.iris.edu\/data\/access\/."},{"key":"e_1_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2013.240"},{"key":"e_1_2_1_27_1","doi-asserted-by":"crossref","unstructured":"Anna Gogolou Theophanis Tsandilas Karima Echihabi Anastasia Bezerianos and Themis Palpanas. 2020. Data Series Progressive Similarity Search with Probabilistic Quality Guarantees. In SIGMOD. Anna Gogolou Theophanis Tsandilas Karima Echihabi Anastasia Bezerianos and Themis Palpanas. 2020. Data Series Progressive Similarity Search with Probabilistic Quality Guarantees. In SIGMOD.","DOI":"10.1145\/3318464.3389751"},{"key":"e_1_2_1_28_1","volume-title":"Proceedings of the Workshops of the EDBT\/ICDT 2019 Joint Conference.","author":"Gogolou Anna","year":"2019","unstructured":"Anna Gogolou , Theophanis Tsandilas , Themis Palpanas , and Anastasia Bezerianos . 2019 . Progressive Similarity Search on Time Series Data . In Proceedings of the Workshops of the EDBT\/ICDT 2019 Joint Conference. Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia Bezerianos. 2019. Progressive Similarity Search on Time Series Data. In Proceedings of the Workshops of the EDBT\/ICDT 2019 Joint Conference."},{"key":"e_1_2_1_29_1","doi-asserted-by":"crossref","unstructured":"Kunio Kashino Gavin Smith and Hiroshi Murase. 1999. Time-series active search for quick retrieval of audio and video. In ICASSP. Kunio Kashino Gavin Smith and Hiroshi Murase. 1999. Time-series active search for quick retrieval of audio and video. In ICASSP.","DOI":"10.1109\/ICASSP.1999.757470"},{"key":"e_1_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1007\/PL00011669"},{"key":"e_1_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10115-004-0154-9"},{"key":"e_1_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jneumeth.2017.08.002"},{"key":"e_1_2_1_33_1","volume-title":"Coconut: sortable summarizations for scalable indexes over static and streaming data series. VLDBJ","author":"Kondylakis Haridimos","year":"2019","unstructured":"Haridimos Kondylakis , Niv Dayan , Kostas Zoumpatianos , and Themis Palpanas . 2019. Coconut: sortable summarizations for scalable indexes over static and streaming data series. VLDBJ ( 2019 ). Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas. 2019. Coconut: sortable summarizations for scalable indexes over static and streaming data series. VLDBJ (2019)."},{"key":"e_1_2_1_34_1","doi-asserted-by":"crossref","unstructured":"Pauline Laviron XueqiDai B\u00e9r\u00e9nice Huquet and Themis Palpanas. 2021. Electricity Demand Activation Extraction: From Known to Unknown Signatures Using Similarity Search. In e-Energy '21: The Twelfth ACM International Conference on Future Energy Systems. 148--159. Pauline Laviron XueqiDai B\u00e9r\u00e9nice Huquet and Themis Palpanas. 2021. Electricity Demand Activation Extraction: From Known to Unknown Signatures Using Similarity Search. In e-Energy '21: The Twelfth ACM International Conference on Future Energy Systems. 148--159.","DOI":"10.1145\/3447555.3464865"},{"key":"e_1_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10115-020-01518-4"},{"key":"e_1_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2019.2909204"},{"key":"e_1_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1145\/882082.882086"},{"key":"e_1_2_1_38_1","volume-title":"ULISSE: ULtra compact Index for Variable-Length Similarity SEarch in Data Series. In ICDE.","author":"Linardi Michele","year":"2018","unstructured":"Michele Linardi and Themis Palpanas . 2018 . ULISSE: ULtra compact Index for Variable-Length Similarity SEarch in Data Series. In ICDE. Michele Linardi and Themis Palpanas. 2018. ULISSE: ULtra compact Index for Variable-Length Similarity SEarch in Data Series. In ICDE."},{"key":"e_1_2_1_39_1","volume-title":"Keogh","author":"Linardi Michele","year":"2018","unstructured":"Michele Linardi , Yan Zhu , Themis Palpanas , and Eamonn J . Keogh . 2018 . Matrix Profile X: VALMOD - Scalable Discovery of Variable-Length Motifs in Data Series. SIGMOD. Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. 2018. Matrix Profile X: VALMOD - Scalable Discovery of Variable-Length Motifs in Data Series. SIGMOD."},{"key":"e_1_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-020-00685-w"},{"key":"e_1_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.actaastro.2006.08.015"},{"key":"e_1_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.5441\/002\/edbt.2016.51"},{"key":"e_1_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1145\/2814710.2814719"},{"key":"e_1_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-49192-8_6"},{"key":"e_1_2_1_45_1","volume-title":"Evolution of a Data Series Index - The iSAX Family of Data Series Indexes. CCIS 1197","author":"Palpanas Themis","year":"2020","unstructured":"Themis Palpanas . 2020. Evolution of a Data Series Index - The iSAX Family of Data Series Indexes. CCIS 1197 ( 2020 ). Themis Palpanas. 2020. Evolution of a Data Series Index - The iSAX Family of Data Series Indexes. CCIS 1197 (2020)."},{"key":"e_1_2_1_46_1","volume-title":"Report on the First and Second Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48","author":"Palpanas Themis","year":"2019","unstructured":"Themis Palpanas and Volker Beckmann . 2019 . Report on the First and Second Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48 , 3 (2019). Themis Palpanas and Volker Beckmann. 2019. Report on the First and Second Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48, 3 (2019)."},{"key":"e_1_2_1_47_1","volume-title":"Franklin","author":"Paparrizos John","year":"2022","unstructured":"John Paparrizos , Yuhao Kang , Paul Boniol , Ruey S. Tsay , Themis Palpanas , and Michael J . Franklin . 2022 . TSB-UAD: An End-to-End Benchmark Suite for Univariate Time-Series Anomaly Detection. PVLDB ( 2022). John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: An End-to-End Benchmark Suite for Univariate Time-Series Anomaly Detection. PVLDB (2022)."},{"key":"e_1_2_1_48_1","unstructured":"Pavlos Paraskevopoulos Thanh-Cong Dinh Zolzaya Dashdorj Themis Palpanas and Luciano Serafini. 2013. Identification and Characterization of Human Behavior Patterns from Mobile Phone Data. In D4D Challenge session NetMob. Pavlos Paraskevopoulos Thanh-Cong Dinh Zolzaya Dashdorj Themis Palpanas and Luciano Serafini. 2013. Identification and Characterization of Human Behavior Patterns from Mobile Phone Data. In D4D Challenge session NetMob."},{"key":"e_1_2_1_49_1","volume-title":"ParIS: The Next Destination for Fast Data Series Indexing and Query Answering","author":"Peng Botao","year":"2018","unstructured":"Botao Peng , Panagiota Fatourou , and Themis Palpanas . 2018. ParIS: The Next Destination for Fast Data Series Indexing and Query Answering . IEEE BigData ( 2018 ). Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2018. ParIS: The Next Destination for Fast Data Series Indexing and Query Answering. IEEE BigData (2018)."},{"key":"e_1_2_1_50_1","volume-title":"MESSI: In-Memory Data Series Indexing. ICDE","author":"Peng Botao","year":"2020","unstructured":"Botao Peng , Panagiota Fatourou , and Themis Palpanas . 2020 . MESSI: In-Memory Data Series Indexing. ICDE (2020). Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. MESSI: In-Memory Data Series Indexing. ICDE (2020)."},{"key":"e_1_2_1_51_1","volume-title":"Fast Data Series Indexing for In-Memory Data. VLDBJ 30, 6","author":"Peng Botao","year":"2021","unstructured":"Botao Peng , Panagiota Fatourou , and Themis Palpanas . 2021. Fast Data Series Indexing for In-Memory Data. VLDBJ 30, 6 ( 2021 ). Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. Fast Data Series Indexing for In-Memory Data. VLDBJ 30, 6 (2021)."},{"key":"e_1_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE51399.2021.00171"},{"key":"e_1_2_1_53_1","volume-title":"Data Series Indexing on Multi-core Architectures. TKDE 33(5)","author":"Peng Botao","year":"2021","unstructured":"Botao Peng , Themis Palpanas , and Panagiota Fatourou . 2021. ParIS+ : Data Series Indexing on Multi-core Architectures. TKDE 33(5) ( 2021 ). Botao Peng, Themis Palpanas, and Panagiota Fatourou. 2021. ParIS+: Data Series Indexing on Multi-core Architectures. TKDE 33(5) (2021)."},{"key":"e_1_2_1_54_1","volume-title":"Keogh","author":"Rakthanmanon Thanawin","year":"2012","unstructured":"Thanawin Rakthanmanon , Bilson J. L. Campana , Abdullah Mueen , Gustavo E. A. P. A. Batista , M. Brandon Westover , Qiang Zhu , Jesin Zakaria , and Eamonn J . Keogh . 2012 . Searching and mining trillions of time series subsequences under dynamic time warping. In KDD. Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gustavo E. A. P. A. Batista, M. Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn J. Keogh. 2012. Searching and mining trillions of time series subsequences under dynamic time warping. In KDD."},{"key":"e_1_2_1_55_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2015.2411594"},{"key":"e_1_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1145\/2247596.2247656"},{"key":"e_1_2_1_57_1","first-page":"40","article-title":"Tuning Time Series Queries in Finance: Case Studies and Recommendations","volume":"22","author":"Shasha Dennis","year":"1999","unstructured":"Dennis Shasha . 1999 . Tuning Time Series Queries in Finance: Case Studies and Recommendations . IEEE Data Eng. Bull. 22 , 2 (1999), 40 -- 46 . Dennis Shasha. 1999. Tuning Time Series Queries in Finance: Case Studies and Recommendations. IEEE Data Eng. Bull. 22, 2 (1999), 40--46.","journal-title":"IEEE Data Eng. Bull."},{"key":"e_1_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/1401890.1401966"},{"key":"e_1_2_1_59_1","volume-title":"iSAX: disk-aware mining and indexing of massive time series datasets. DMKD","author":"Shieh Jin","year":"2009","unstructured":"Jin Shieh and Eamonn Keogh . 2009. iSAX: disk-aware mining and indexing of massive time series datasets. DMKD ( 2009 ). Jin Shieh and Eamonn Keogh. 2009. iSAX: disk-aware mining and indexing of massive time series datasets. DMKD (2009)."},{"key":"e_1_2_1_60_1","unstructured":"Skoltech Computer Vision. 2018. Deep billion-scale indexing. Skoltech Computer Vision. 2018. Deep billion-scale indexing."},{"key":"e_1_2_1_61_1","doi-asserted-by":"publisher","DOI":"10.1051\/0004-6361\/201322653"},{"key":"e_1_2_1_62_1","unstructured":"Southwest University. 2018. Southwest University Adult Lifespan Dataset (SALD). http:\/\/fcon_1000.projects.nitrc.org\/indi\/retro\/sald.html?utm_source=newsletter&utm_medium=email&utm_content=See%20Data&utm_campaign=indi-1 Southwest University. 2018. Southwest University Adult Lifespan Dataset (SALD). http:\/\/fcon_1000.projects.nitrc.org\/indi\/retro\/sald.html?utm_source=newsletter&utm_medium=email&utm_content=See%20Data&utm_campaign=indi-1"},{"key":"e_1_2_1_63_1","doi-asserted-by":"crossref","unstructured":"Qitong Wang and Themis Palpanas. 2021. Deep Learning Embeddings for Data Series Similarity Search. In SIGKDD. Qitong Wang and Themis Palpanas. 2021. Deep Learning Embeddings for Data Series Similarity Search. In SIGKDD.","DOI":"10.1145\/3447548.3467317"},{"key":"e_1_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.14778\/2536206.2536208"},{"key":"e_1_2_1_65_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2017.151"},{"key":"e_1_2_1_66_1","volume-title":"Massively Distributed Time Series Indexing and Querying. TKDE 31(1)","author":"Yagoubi Djamel-Edine","year":"2020","unstructured":"Djamel-Edine Yagoubi , Reza Akbarinia , Florent Masseglia , and Themis Palpanas . 2020. Massively Distributed Time Series Indexing and Querying. TKDE 31(1) ( 2020 ). Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas. 2020. Massively Distributed Time Series Indexing and Querying. TKDE 31(1) (2020)."},{"key":"e_1_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2019.00110"},{"key":"e_1_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00778-016-0442-5"},{"key":"e_1_2_1_69_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00778-018-0513-x"},{"key":"e_1_2_1_70_1","doi-asserted-by":"crossref","unstructured":"Kostas Zoumpatianos Yin Lou Themis Palpanas and Johannes Gehrke. 2015. Query Workloads for Data Series Indexes. In KDD. Kostas Zoumpatianos Yin Lou Themis Palpanas and Johannes Gehrke. 2015. Query Workloads for Data Series Indexes. In KDD.","DOI":"10.1145\/2783258.2783382"},{"key":"e_1_2_1_71_1","doi-asserted-by":"crossref","unstructured":"Kostas Zoumpatianos and Themis Palpanas. 2018. Data Series Management: Fulfilling the Need for Big Sequence Analytics. In ICDE. Kostas Zoumpatianos and Themis Palpanas. 2018. Data Series Management: Fulfilling the Need for Big Sequence Analytics. In ICDE.","DOI":"10.1109\/ICDE.2018.00211"}],"container-title":["Proceedings of the VLDB Endowment"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.14778\/3547305.3547308","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,28]],"date-time":"2022-12-28T11:10:47Z","timestamp":1672225847000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.14778\/3547305.3547308"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":71,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2022,6]]}},"alternative-id":["10.14778\/3547305.3547308"],"URL":"https:\/\/doi.org\/10.14778\/3547305.3547308","relation":{},"ISSN":["2150-8097"],"issn-type":[{"value":"2150-8097","type":"print"}],"subject":[],"published":{"date-parts":[[2022,6]]}}}