{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T06:37:32Z","timestamp":1726209452823},"reference-count":75,"publisher":"Association for Computing Machinery (ACM)","issue":"12","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Proc. VLDB Endow."],"published-print":{"date-parts":[[2021,7]]},"abstract":"Although learning-based database optimization techniques have been studied from academia in recent years, they have not been widely deployed in commercial database systems. In this work, we build an autonomous database framework and integrate our proposed learning-based database techniques into an open-source database system openGauss. We propose effective learning-based models to build learned optimizers (including learned query rewrite, learned cost\/cardinality estimation, learned join order selection and physical operator selection) and learned database advisors (including self-monitoring, self-diagnosis, self-configuration, and self-optimization). We devise an effective validation model to validate the effectiveness of learned models. We build effective training data management and model management platforms to easily deploy learned models. We have evaluated our techniques on real-world datasets and the experimental results validated the effectiveness of our techniques. We also provide our learnings of deploying learning-based techniques.<\/jats:p>","DOI":"10.14778\/3476311.3476380","type":"journal-article","created":{"date-parts":[[2021,10,28]],"date-time":"2021-10-28T22:48:43Z","timestamp":1635461323000},"page":"3028-3042","source":"Crossref","is-referenced-by-count":48,"title":["openGauss"],"prefix":"10.14778","volume":"14","author":[{"given":"Guoliang","family":"Li","sequence":"first","affiliation":[{"name":"Tsinghua University, Beijing, China"}]},{"given":"Xuanhe","family":"Zhou","sequence":"additional","affiliation":[{"name":"Tsinghua University, Beijing, China"}]},{"given":"Ji","family":"Sun","sequence":"additional","affiliation":[{"name":"Tsinghua University, Beijing, China"}]},{"given":"Xiang","family":"Yu","sequence":"additional","affiliation":[{"name":"Tsinghua University, Beijing, China"}]},{"given":"Yue","family":"Han","sequence":"additional","affiliation":[{"name":"Tsinghua University, Beijing, China"}]},{"given":"Lianyuan","family":"Jin","sequence":"additional","affiliation":[{"name":"Tsinghua University, Beijing, China"}]},{"given":"Wenbo","family":"Li","sequence":"additional","affiliation":[{"name":"Tsinghua University, Beijing, China"}]},{"given":"Tianqing","family":"Wang","sequence":"additional","affiliation":[{"name":"Huawei Company, Beijing, China"}]},{"given":"Shifu","family":"Li","sequence":"additional","affiliation":[{"name":"Huawei Company, Beijing, China"}]}],"member":"320","published-online":{"date-parts":[[2021,10,28]]},"reference":[{"key":"e_1_2_1_1_1","unstructured":"[n.d.]. https:\/\/github.com\/opengauss-mirror. [n.d.]. https:\/\/github.com\/opengauss-mirror."},{"key":"e_1_2_1_2_1","unstructured":"[n.d.]. https:\/\/www.postgresql.org\/. [n.d.]. https:\/\/www.postgresql.org\/."},{"key":"e_1_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.14778\/3415478.3415533"},{"key":"e_1_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/3035918.3064029"},{"key":"e_1_2_1_5_1","volume-title":"Miles Brundage, and Anil Anthony Bharath.","author":"Arulkumaran Kai","year":"2017"},{"key":"e_1_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/3183713.3190662"},{"key":"e_1_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICAC.2005.12"},{"key":"e_1_2_1_8_1","unstructured":"Nedyalko Borisov Sandeep Uttamchandani Ramani Routray and Aameek Singh. 2009. Why Did My Query Slow Down. In CIDR. www.cidrdb.org. http:\/\/www-db.cs.wisc.edu\/cidr\/cidr2009\/Paper_72.pdf Nedyalko Borisov Sandeep Uttamchandani Ramani Routray and Aameek Singh. 2009. Why Did My Query Slow Down. In CIDR . www.cidrdb.org. http:\/\/www-db.cs.wisc.edu\/cidr\/cidr2009\/Paper_72.pdf"},{"key":"e_1_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCIAIG.2012.2186810"},{"key":"e_1_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/276305.276337"},{"key":"e_1_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.14778\/2824032.2824074"},{"key":"e_1_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/2882903.2903733"},{"key":"e_1_2_1_13_1","unstructured":"Karl Dias Mark Ramacher Uri Shaft Venkateshwaran Venkataramani and Graham Wood. 2005. Automatic Performance Diagnosis and Tuning in Oracle. In CIDR. www.cidrdb.org 84--94. http:\/\/cidrdb.org\/cidr2005\/papers\/P07.pdf Karl Dias Mark Ramacher Uri Shaft Venkateshwaran Venkataramani and Graham Wood. 2005. Automatic Performance Diagnosis and Tuning in Oracle. In CIDR . www.cidrdb.org 84--94. http:\/\/cidrdb.org\/cidr2005\/papers\/P07.pdf"},{"key":"e_1_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134015"},{"key":"e_1_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/1989323.1989359"},{"key":"e_1_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCC.2020.3007016"},{"key":"e_1_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.5555\/645476.757687"},{"key":"e_1_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/3209978.3209987"},{"key":"e_1_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1007\/s41019-019-00115-y"},{"key":"e_1_2_1_20_1","doi-asserted-by":"crossref","unstructured":"Yue Han Guoliang Li Haitao Yuan and Ji Sun. 2021. An Autonomous Materialized View Management System with Deep Reinforcement Learning. In ICDE. Yue Han Guoliang Li Haitao Yuan and Ji Sun. 2021. An Autonomous Materialized View Management System with Deep Reinforcement Learning. In ICDE .","DOI":"10.1109\/ICDE51399.2021.00217"},{"key":"e_1_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.14778\/3384345.3384349"},{"key":"e_1_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1145\/119995.115813"},{"key":"e_1_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.14778\/3192965.3192971"},{"key":"e_1_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/3299869.3319904"},{"key":"e_1_2_1_25_1","volume-title":"Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In CIDR. www.cidrdb.org","author":"Kipf Andreas","year":"2019"},{"key":"e_1_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1007\/11871842_29"},{"key":"e_1_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.14778\/3407790.3407832"},{"key":"e_1_2_1_28_1","volume-title":"Chi, and et al","author":"Kraska Tim","year":"2019"},{"key":"e_1_2_1_29_1","volume-title":"Learning to Optimize Join Queries With Deep Reinforcement Learning. CoRR abs\/1808.03196","author":"Krishnan Sanjay","year":"2018"},{"key":"e_1_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/3340531.3412106"},{"key":"e_1_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-30490-4_r56"},{"key":"e_1_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.14778\/3352063.3352141"},{"key":"e_1_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1145\/3448016.3457542"},{"key":"e_1_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.14778\/3476311.3476405"},{"key":"e_1_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.14778\/3352063.3352129"},{"key":"e_1_2_1_37_1","first-page":"70","article-title":"XuanYuan: An AI-Native Database","volume":"42","author":"Li Guoliang","year":"2019","journal-title":"IEEE Data Eng. Bull."},{"key":"e_1_2_1_38_1","volume-title":"Article 68","author":"Li Mingda","year":"2020"},{"key":"e_1_2_1_39_1","volume-title":"Opportunistic View Materialization with Deep Reinforcement Learning. CoRR abs\/1903.01363","author":"Liang Xi","year":"2019"},{"key":"e_1_2_1_40_1","unstructured":"Timothy P. Lillicrap Jonathan J. Hunt Alexander Pritzel and etal 2016. Continuous control with deep reinforcement learning. In ICLR. http:\/\/arxiv.org\/abs\/1509.02971 Timothy P. Lillicrap Jonathan J. Hunt Alexander Pritzel and et al. 2016. Continuous control with deep reinforcement learning. In ICLR . http:\/\/arxiv.org\/abs\/1509.02971"},{"key":"e_1_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP40776.2020.9053558"},{"key":"e_1_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.14778\/3389133.3389136"},{"key":"e_1_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1145\/3211954.3211957"},{"key":"e_1_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/3211954.3211957"},{"key":"e_1_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.14778\/3342263.3342644"},{"key":"e_1_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.14778\/3342263.3342646"},{"key":"e_1_2_1_47_1","volume-title":"Riedmiller","author":"Mnih Volodymyr","year":"2013"},{"key":"e_1_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.14778\/3407790.3407834"},{"key":"e_1_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1145\/3318464.3389727"},{"key":"e_1_2_1_50_1","unstructured":"Andrew Pavlo Gustavo Angulo Joy Arulraj Haibin Lin and etal 2017. Self-Driving Database Management Systems. In CIDR. http:\/\/cidrdb.org\/cidr2017\/papers\/p42-pavlo-cidr17.pdf Andrew Pavlo Gustavo Angulo Joy Arulraj Haibin Lin and et al. 2017. Self-Driving Database Management Systems. In CIDR . http:\/\/cidrdb.org\/cidr2017\/papers\/p42-pavlo-cidr17.pdf"},{"key":"e_1_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623732"},{"key":"e_1_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1145\/141484.130294"},{"key":"e_1_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDEW49219.2020.00035"},{"key":"e_1_2_1_54_1","volume-title":"Felix Martin Schuhknecht, and Jens Dittrich","author":"Sharma Ankur","year":"2018"},{"key":"e_1_2_1_55_1","doi-asserted-by":"publisher","DOI":"10.14778\/3368289.3368296"},{"key":"e_1_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.14778\/3339490.3339503"},{"key":"e_1_2_1_57_1","doi-asserted-by":"publisher","DOI":"10.1145\/2783258.2783307"},{"key":"e_1_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/2736277.2741093"},{"key":"e_1_2_1_59_1","doi-asserted-by":"publisher","DOI":"10.1007\/s41019-020-00117-1"},{"key":"e_1_2_1_60_1","doi-asserted-by":"publisher","DOI":"10.1145\/3299869.3300088"},{"key":"e_1_2_1_61_1","doi-asserted-by":"publisher","DOI":"10.1145\/3299869.3300088"},{"key":"e_1_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.5555\/646102.681177"},{"key":"e_1_2_1_63_1","doi-asserted-by":"publisher","DOI":"10.1145\/1463788.1463792"},{"key":"e_1_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.14778\/2536206.2536219"},{"key":"e_1_2_1_65_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE.2013.6544899"},{"key":"e_1_2_1_66_1","doi-asserted-by":"publisher","DOI":"10.14778\/3421424.3421432"},{"key":"e_1_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.14778\/3368289.3368294"},{"key":"e_1_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.1145\/2882903.2915218"},{"key":"e_1_2_1_69_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE48307.2020.00116"},{"key":"e_1_2_1_70_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE48307.2020.00133"},{"key":"e_1_2_1_71_1","doi-asserted-by":"publisher","DOI":"10.1145\/3299869.3300085"},{"key":"e_1_2_1_72_1","doi-asserted-by":"publisher","DOI":"10.5555\/1083592.1083628"},{"key":"e_1_2_1_73_1","volume-title":"Database Meets Artificial Intelligence: A Survey. TKDE","author":"Zhou Xuanhe","year":"2020"},{"key":"e_1_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.14778\/3476311.3476334"},{"key":"e_1_2_1_75_1","doi-asserted-by":"publisher","DOI":"10.14778\/3397230.3397238"},{"key":"e_1_2_1_76_1","doi-asserted-by":"publisher","DOI":"10.1145\/3127479.3128605"}],"container-title":["Proceedings of the VLDB Endowment"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.14778\/3476311.3476380","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,28]],"date-time":"2022-12-28T11:37:01Z","timestamp":1672227421000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.14778\/3476311.3476380"}},"subtitle":["an autonomous database system"],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":75,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2021,7]]}},"alternative-id":["10.14778\/3476311.3476380"],"URL":"https:\/\/doi.org\/10.14778\/3476311.3476380","relation":{},"ISSN":["2150-8097"],"issn-type":[{"value":"2150-8097","type":"print"}],"subject":[],"published":{"date-parts":[[2021,7]]}}}