{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,4]],"date-time":"2024-12-04T13:47:54Z","timestamp":1733320074361,"version":"3.30.1"},"update-to":[{"updated":{"date-parts":[[2023,9,12]],"date-time":"2023-09-12T00:00:00Z","timestamp":1694476800000},"DOI":"10.1371\/journal.pcbi.1011324","type":"new_version","label":"New version"}],"reference-count":78,"publisher":"Public Library of Science (PLoS)","issue":"8","license":[{"start":{"date-parts":[[2023,8,25]],"date-time":"2023-08-25T00:00:00Z","timestamp":1692921600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Institute of Health","award":["2U24CA180996"]},{"DOI":"10.13039\/100014989","name":"Chan Zuckerberg Initiative","doi-asserted-by":"publisher","award":["CZF2019-002443"],"id":[{"id":"10.13039\/100014989","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Belgian National Fund for Scientific Research"}],"content-domain":{"domain":["www.ploscompbiol.org"],"crossmark-restriction":false},"short-container-title":["PLoS Comput Biol"],"abstract":"\nBackground<\/jats:title>\nThe majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and\/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes.<\/jats:p>\n<\/jats:sec>\n\nResults<\/jats:title>\nWe collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment<\/jats:italic> Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal<\/jats:italic> package in Bioconductor\u2019s Cloud-based ExperimentHub<\/jats:italic>. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor\u2019s ecosystem of hundreds of packages for single-cell and multimodal data.<\/jats:p>\n<\/jats:sec>\n\nConclusions<\/jats:title>\nWe provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal<\/jats:italic>. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease.<\/jats:p>\n<\/jats:sec>","DOI":"10.1371\/journal.pcbi.1011324","type":"journal-article","created":{"date-parts":[[2023,8,25]],"date-time":"2023-08-25T17:35:42Z","timestamp":1692984942000},"page":"e1011324","update-policy":"https:\/\/doi.org\/10.1371\/journal.pcbi.corrections_policy","source":"Crossref","is-referenced-by-count":0,"title":["Curated single cell multimodal landmark datasets for R\/Bioconductor"],"prefix":"10.1371","volume":"19","author":[{"given":"Kelly B.","family":"Eckenrode","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1504-3583","authenticated-orcid":true,"given":"Dario","family":"Righelli","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3242-0582","authenticated-orcid":true,"given":"Marcel","family":"Ramos","sequence":"additional","affiliation":[]},{"given":"Ricard","family":"Argelaguet","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7443-5427","authenticated-orcid":true,"given":"Christophe","family":"Vanderaa","sequence":"additional","affiliation":[]},{"given":"Ludwig","family":"Geistlinger","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1395-9734","authenticated-orcid":true,"given":"Aedin C.","family":"Culhane","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1520-2268","authenticated-orcid":true,"given":"Laurent","family":"Gatto","sequence":"additional","affiliation":[]},{"given":"Vincent","family":"Carey","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5874-8148","authenticated-orcid":true,"given":"Martin","family":"Morgan","sequence":"additional","affiliation":[]},{"given":"Davide","family":"Risso","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0821-0112","authenticated-orcid":true,"given":"Levi","family":"Waldron","sequence":"additional","affiliation":[]}],"member":"340","published-online":{"date-parts":[[2023,8,25]]},"reference":[{"key":"pcbi.1011324.ref001","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1038\/s41592-019-0693-3","article-title":"Single-cell biology: beyond the sum of its parts","volume":"17","author":"AF Schier","year":"2020","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref002","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41592-019-0703-5","volume":"17","author":"Method of the Year 2019: Single-cell multimodal omics","year":"2020","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref003","doi-asserted-by":"crossref","first-page":"865","DOI":"10.1038\/nmeth.4380","article-title":"Simultaneous epitope and transcriptome measurement in single cells.","volume":"14","author":"M Stoeckius","year":"2017","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref004","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1038\/s41592-019-0392-0","article-title":"Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells.","volume":"16","author":"EP Mimitou","year":"2019","journal-title":"Nat Methods."},{"key":"pcbi.1011324.ref005","first-page":"9","article-title":"ScNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells e","author":"SJ Clark","year":"2018","journal-title":"Nat Commun"},{"journal-title":"protocols.io","article-title":"Nuclei Isolation from Tissue for 10x Multiome v1.","author":"M Shi","key":"pcbi.1011324.ref006"},{"key":"pcbi.1011324.ref007","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1038\/nmeth.2892","article-title":"Single-cell in situ RNA profiling by sequential hybridization","author":"E Lubeck","year":"2014","journal-title":"Nature methods"},{"key":"pcbi.1011324.ref008","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1038\/nmeth.3370","article-title":"G&T-seq: parallel sequencing of single-cell genomes and transcriptomes.","volume":"12","author":"IC Macaulay","year":"2015","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref009","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1186\/s13059-021-02267-5","article-title":"Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2","volume":"22","author":"H Specht","year":"2021","journal-title":"Genome Biol"},{"key":"pcbi.1011324.ref010","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1038\/s41592-019-0654-x","article-title":"Orchestrating single-cell analysis with Bioconductor.","volume":"17","author":"RA Amezquita","year":"2020","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref011","doi-asserted-by":"crossref","first-page":"e39","DOI":"10.1158\/0008-5472.CAN-17-0344","article-title":"Software for the Integration of Multiomics Experiments in Bioconductor","volume":"77","author":"M Ramos","year":"2017","journal-title":"Cancer Res"},{"key":"pcbi.1011324.ref012","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1038\/nmeth.3252","article-title":"Orchestrating high-throughput genomic analysis with Bioconductor.","volume":"12","author":"W Huber","year":"2015","journal-title":"Nat Methods."},{"key":"pcbi.1011324.ref013","doi-asserted-by":"crossref","first-page":"1888","DOI":"10.1016\/j.cell.2019.05.031","article-title":"Comprehensive Integration of Single-Cell Data","volume":"177","author":"T Stuart","year":"2019","journal-title":"Cell"},{"key":"pcbi.1011324.ref014","doi-asserted-by":"crossref","first-page":"e1005752","DOI":"10.1371\/journal.pcbi.1005752","article-title":"mixOmics: An R package for \u2018omics feature selection and multiple data integration.","volume":"13","author":"F Rohart","year":"2017","journal-title":"PLoS Comput Biol"},{"key":"pcbi.1011324.ref015","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1186\/s13059-020-02015-1","article-title":"MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data","volume":"21","author":"R Argelaguet","year":"2020","journal-title":"Genome Biol"},{"key":"pcbi.1011324.ref016","doi-asserted-by":"crossref","first-page":"4137","DOI":"10.1093\/bioinformatics\/btaa282","article-title":"CiteFuse enables multi-modal analysis of CITE-seq data","volume":"36","author":"HJ Kim","year":"2020","journal-title":"Bioinformatics"},{"key":"pcbi.1011324.ref017","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1186\/s13059-017-1382-0","article-title":"SCANPY: large-scale single-cell gene expression data analysis","volume":"19","author":"FA Wolf","year":"2018","journal-title":"Genome Biol"},{"key":"pcbi.1011324.ref018","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1038\/s41592-019-0466-z","article-title":"Joint analysis of heterogeneous single-cell RNA-seq dataset collections.","volume":"16","author":"N Barkas","year":"2019","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref019","article-title":"Bioinformatics and Computational Biology Solutions Using R and Bioconductor.","author":"R Gentleman","year":"2006","journal-title":"Springer Science & Business Media"},{"key":"pcbi.1011324.ref020","doi-asserted-by":"crossref","first-page":"e1003118","DOI":"10.1371\/journal.pcbi.1003118","article-title":"Software for computing and annotating genomic ranges.","volume":"9","author":"M Lawrence","year":"2013","journal-title":"PLoS Comput Biol"},{"key":"pcbi.1011324.ref021","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1186\/s13059-021-02433-9","article-title":"Community-wide hackathons to identify central themes in single-cell multi-omics","volume":"22","author":"K-A L\u00ea Cao","year":"2021","journal-title":"Genome Biol"},{"key":"pcbi.1011324.ref022","unstructured":"Al J Abadi Emily F. Davis-Marcisak Lauren Hsu Arshi Arora Alexis Coullomb Atul Deshpande Yuzhou Feng Melanie Loth Vera Pancaldi Kris Sankaran Amrit Singh Joshua S. Sodicoff Genevieve L. Stein-O\u2019Brien Ayshwarya Subramanian Joshua D. Welch Yue You Ricard Argelaguet Vincent J. Carey Ruben Dries Casey S. Greene Susan Holmes Michael I. Love Matthew E. Ritchie Guo-Cheng Yuan Aedin C Culhane and Elana Fertig K-ALC. \u201cCommunity-wide hackathons establish foundations for emerging single cell data integration.\u201d In submission."},{"key":"pcbi.1011324.ref023","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1038\/s41586-019-1825-8","article-title":"Multi-omics profiling of mouse gastrulation at single-cell resolution","volume":"576","author":"R Argelaguet","year":"2019","journal-title":"Nature"},{"key":"pcbi.1011324.ref024","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1038\/nn.4216","article-title":"Adult mouse cortical cell taxonomy revealed by single cell transcriptomics","volume":"19","author":"B Tasic","year":"2016","journal-title":"Nat Neurosci"},{"key":"pcbi.1011324.ref025","doi-asserted-by":"crossref","first-page":"2309","DOI":"10.1084\/jem.20072462","article-title":"Dissecting T cell lineage relationships by cellular barcoding","volume":"205","author":"K Schepers","year":"2008","journal-title":"J Exp Med"},{"key":"pcbi.1011324.ref026","first-page":"120600","article-title":"UpSetR: An R Package For The Visualization Of Intersecting Sets And Their Properties.","author":"JR Conway","year":"2017","journal-title":"bioRxiv."},{"key":"pcbi.1011324.ref027","doi-asserted-by":"crossref","first-page":"882","DOI":"10.1038\/s41467-018-03367-w","article-title":"Nanodroplet processing platform for deep and quantitative proteome profiling of 10\u2013100 mammalian cells.","volume":"9","author":"Y Zhu","year":"2018","journal-title":"Nat Commun"},{"key":"pcbi.1011324.ref028","doi-asserted-by":"crossref","first-page":"1739","DOI":"10.1074\/mcp.R120.002234","article-title":"Single-cell Proteomics: Progress and Prospects","volume":"19","author":"RT Kelly","year":"2020","journal-title":"Mol Cell Proteomics"},{"key":"pcbi.1011324.ref029","first-page":"2021","article-title":"Utilizing Scp for the analysis and replication of single-cell proteomics data","author":"C Vanderaa","year":"2021","journal-title":"bioRxiv"},{"key":"pcbi.1011324.ref030","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1126\/science.aan6826","article-title":"Single-cell epigenomics: Recording the past and predicting the future","volume":"358","author":"G Kelsey","year":"2017","journal-title":"Science"},{"key":"pcbi.1011324.ref031","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1038\/s41576-018-0089-8","article-title":"Chromatin accessibility and the regulatory epigenome","volume":"20","author":"SL Klemm","year":"2019","journal-title":"Nat Rev Genet"},{"key":"pcbi.1011324.ref032","doi-asserted-by":"crossref","first-page":"817","DOI":"10.1038\/nmeth.3035","article-title":"Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity.","volume":"11","author":"SA Smallwood","year":"2014","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref033","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1038\/nmeth.3728","article-title":"Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity.","volume":"13","author":"C Angermueller","year":"2016","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref034","doi-asserted-by":"crossref","first-page":"prot5384","DOI":"10.1101\/pdb.prot5384","article-title":"DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells.","volume":"2010","author":"L Song","year":"2010","journal-title":"Cold Spring Harb Protoc"},{"key":"pcbi.1011324.ref035","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1038\/nature14590","article-title":"Single-cell chromatin accessibility reveals principles of regulatory variation","volume":"523","author":"JD Buenrostro","year":"2015","journal-title":"Nature"},{"key":"pcbi.1011324.ref036","doi-asserted-by":"crossref","first-page":"1452","DOI":"10.1038\/s41587-019-0290-0","article-title":"High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell","volume":"37","author":"S Chen","year":"2019","journal-title":"Nat Biotechnol"},{"key":"pcbi.1011324.ref037","doi-asserted-by":"crossref","first-page":"1103","DOI":"10.1016\/j.cell.2020.09.056","article-title":"Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin","volume":"183","author":"S Ma","year":"2020","journal-title":"Cell"},{"key":"pcbi.1011324.ref038","first-page":"6","article-title":"Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells","author":"S. Pott","year":"2017","journal-title":"Elife"},{"key":"pcbi.1011324.ref039","doi-asserted-by":"crossref","first-page":"aaa6090","DOI":"10.1126\/science.aaa6090","article-title":"RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells","volume":"348","author":"KH Chen","year":"2015","journal-title":"Science"},{"key":"pcbi.1011324.ref040","doi-asserted-by":"crossref","first-page":"1463","DOI":"10.1126\/science.aaw1219","article-title":"Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution","volume":"363","author":"SG Rodriques","year":"2019","journal-title":"Science"},{"key":"pcbi.1011324.ref041","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1038\/s41586-019-1049-y","article-title":"Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH","volume":"568","author":"C-HL Eng","year":"2019","journal-title":"Nature"},{"key":"pcbi.1011324.ref042","first-page":"2021.01.27.428431","article-title":"SpatialExperiment: infrastructure for spatially resolved transcriptomics data in R using Bioconductor.","author":"D Righelli","year":"2021","journal-title":"Cold Spring Harbor Laboratory."},{"key":"pcbi.1011324.ref043","first-page":"2021.05.11.443152","article-title":"Museum of Spatial Transcriptomics.","author":"L Moses","year":"2021","journal-title":"bioRxiv"},{"key":"pcbi.1011324.ref044","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1016\/j.neuron.2016.10.001","article-title":"In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus","volume":"92","author":"S Shah","year":"2016","journal-title":"Neuron"},{"key":"pcbi.1011324.ref045","article-title":"Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data","author":"Q Zhu","year":"2018","journal-title":"Nat Biotechnol"},{"key":"pcbi.1011324.ref046","unstructured":"birsauthors. White Paper for the Mathematical Frameworks for Integrative Analysis of Emerging Biological Data Types Workshop. Available from: https:\/\/github.com\/BIRSBiointegration\/whitePaper."},{"key":"pcbi.1011324.ref047","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1093\/humupd\/dmu016","article-title":"The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans","volume":"20","author":"TH Taylor","year":"2014","journal-title":"Hum Reprod Update"},{"key":"pcbi.1011324.ref048","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1186\/s13059-019-1645-z","article-title":"clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers","volume":"20","author":"KR Campbell","year":"2019","journal-title":"Genome Biol"},{"key":"pcbi.1011324.ref049","doi-asserted-by":"crossref","first-page":"2081","DOI":"10.1038\/nprot.2016.138","article-title":"Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.","volume":"11","author":"IC Macaulay","year":"2016","journal-title":"Nat Protoc."},{"key":"pcbi.1011324.ref050","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1038\/nbt.3129","article-title":"Integrated genome and transcriptome sequencing of the same cell","volume":"33","author":"SS Dey","year":"2015","journal-title":"Nat Biotechnol"},{"key":"pcbi.1011324.ref051","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1038\/s41576-019-0093-7","article-title":"Integrative single-cell analysis","volume":"20","author":"T Stuart","year":"2019","journal-title":"Nat Rev Genet"},{"key":"pcbi.1011324.ref052","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1038\/nmeth.4140","article-title":"Scalable whole-genome single-cell library preparation without preamplification.","volume":"14","author":"H Zahn","year":"2017","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref053","doi-asserted-by":"crossref","first-page":"14049","DOI":"10.1038\/ncomms14049","article-title":"Massively parallel digital transcriptional profiling of single cells.","volume":"8","author":"GXY Zheng","year":"2017","journal-title":"Nat Commun"},{"article-title":"RaggedExperiment: Representation of Sparse Experiments and Assays Across Samples.(","year":"2017","author":"M Ramos","key":"pcbi.1011324.ref054"},{"key":"pcbi.1011324.ref055","doi-asserted-by":"crossref","first-page":"972","DOI":"10.1093\/bioinformatics\/btz632","article-title":"CNVRanger: association analysis of CNVs with gene expression and quantitative phenotypes","volume":"36","author":"V da Silva","year":"2020","journal-title":"Bioinformatics"},{"key":"pcbi.1011324.ref056","article-title":"Integrated analysis of multimodal single-cell data","author":"Y Hao","year":"2021","journal-title":"Cell"},{"key":"pcbi.1011324.ref057","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1186\/s12859-017-1553-8","article-title":"MINT: a multivariate integrative method to identify reproducible molecular signatures across independent experiments and platforms","volume":"18","author":"F Rohart","year":"2017","journal-title":"BMC Bioinformatics"},{"key":"pcbi.1011324.ref058","doi-asserted-by":"crossref","first-page":"3055","DOI":"10.1093\/bioinformatics\/bty1054","article-title":"DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays","volume":"35","author":"A Singh","year":"2019","journal-title":"Bioinformatics"},{"key":"pcbi.1011324.ref059","doi-asserted-by":"crossref","first-page":"1023","DOI":"10.1038\/nmeth.4468","article-title":"Accessible, curated metagenomic data through ExperimentHub.","volume":"14","author":"E Pasolli","year":"2017","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref060","doi-asserted-by":"crossref","first-page":"958","DOI":"10.1200\/CCI.19.00119","article-title":"Multiomic Integration of Public Oncology Databases in Bioconductor.","volume":"4","author":"M Ramos","year":"2020","journal-title":"JCO Clin Cancer Inform"},{"key":"pcbi.1011324.ref061","doi-asserted-by":"crossref","first-page":"2356","DOI":"10.1093\/bioinformatics\/btab091","article-title":"Per-sample standardization and asymmetric winsorization lead to accurate clustering of RNA-seq expression profiles","volume":"37","author":"D Risso","year":"2021","journal-title":"Bioinformatics"},{"key":"pcbi.1011324.ref062","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1186\/s13326-016-0088-7","article-title":"The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability.","volume":"7","author":"AD Diehl","year":"2016","journal-title":"J Biomed Semantics."},{"key":"pcbi.1011324.ref063","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.jbi.2006.02.013","article-title":"NCI Thesaurus: a semantic model integrating cancer-related clinical and molecular information.","volume":"40","author":"N Sioutos","year":"2007","journal-title":"J Biomed Inform"},{"key":"pcbi.1011324.ref064","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1186\/s13059-019-1662-y","article-title":"EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data","volume":"20","author":"participants in the 1st Human Cell Atlas Jamboree","year":"2019","journal-title":"Genome Biol"},{"key":"pcbi.1011324.ref065","doi-asserted-by":"crossref","first-page":"2667","DOI":"10.1038\/s41467-018-05083-x","article-title":"Detection and removal of barcode swapping in single-cell RNA-seq data.","volume":"9","author":"JA Griffiths","year":"2018","journal-title":"Nat Commun."},{"key":"pcbi.1011324.ref066","doi-asserted-by":"crossref","first-page":"923","DOI":"10.1093\/bioinformatics\/btt656","article-title":"featureCounts: an efficient general purpose program for assigning sequence reads to genomic features","volume":"30","author":"Y Liao","year":"2014","journal-title":"Bioinformatics"},{"key":"pcbi.1011324.ref067","doi-asserted-by":"crossref","first-page":"D710","DOI":"10.1093\/nar\/gkv1157","article-title":"Ensembl 2016.","volume":"44","author":"A Yates","year":"2016","journal-title":"Nucleic Acids Res"},{"key":"pcbi.1011324.ref068","first-page":"2122","article-title":"A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.","author":"ATL Lun","year":"2016","journal-title":"F1000Research."},{"key":"pcbi.1011324.ref069","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1093\/bioinformatics\/btr167","article-title":"Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications","volume":"27","author":"F Krueger","year":"2011","journal-title":"Bioinformatics"},{"key":"pcbi.1011324.ref070","doi-asserted-by":"crossref","first-page":"2497","DOI":"10.1101\/gr.143008.112","article-title":"Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules","volume":"22","author":"TK Kelly","year":"2012","journal-title":"Genome Res"},{"key":"pcbi.1011324.ref071","doi-asserted-by":"crossref","first-page":"D82","DOI":"10.1093\/nar\/gkaa1028","article-title":"The European Nucleotide Archive in 2020","volume":"49","author":"PW Harrison","year":"2021","journal-title":"Nucleic Acids Res"},{"key":"pcbi.1011324.ref072","doi-asserted-by":"crossref","first-page":"e47","DOI":"10.1093\/nar\/gkz114","article-title":"The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads","volume":"47","author":"Y Liao","year":"2019","journal-title":"Nucleic Acids Res"},{"key":"pcbi.1011324.ref073","doi-asserted-by":"crossref","first-page":"11.12.1","DOI":"10.1002\/0471250953.bi1112s47","article-title":"BEDTools: The Swiss-Army Tool for Genome Feature Analysis.","volume":"47","author":"AR Quinlan","year":"2014","journal-title":"Curr Protoc Bioinformatics"},{"key":"pcbi.1011324.ref074","doi-asserted-by":"crossref","first-page":"1058","DOI":"10.1038\/nmeth.3578","article-title":"Interactive analysis and assessment of single-cell copy-number variations.","volume":"12","author":"T Garvin","year":"2015","journal-title":"Nat Methods"},{"key":"pcbi.1011324.ref075","article-title":"UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.","author":"L McInnes","year":"2018","journal-title":"arXiv [stat.ML]."},{"key":"pcbi.1011324.ref076","article-title":"ALL Bioconductor package","author":"X. Li","year":"2004","journal-title":"Bioconductor"},{"key":"pcbi.1011324.ref077","first-page":"1140","article-title":"HSMMSingleCell: Single-cell RNA-Seq for differentiating human skeletal muscle myoblasts (HSMM).","author":"C. Trapnell","year":"2014","journal-title":"R package version."},{"key":"pcbi.1011324.ref078","doi-asserted-by":"crossref","first-page":"bat013","DOI":"10.1093\/database\/bat013","article-title":"curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome","volume":"2013","author":"BF Ganzfried","year":"2013","journal-title":"Database"}],"updated-by":[{"updated":{"date-parts":[[2023,9,12]],"date-time":"2023-09-12T00:00:00Z","timestamp":1694476800000},"DOI":"10.1371\/journal.pcbi.1011324","type":"new_version","label":"New version"}],"container-title":["PLOS Computational Biology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dx.plos.org\/10.1371\/journal.pcbi.1011324","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,12]],"date-time":"2023-09-12T17:32:37Z","timestamp":1694539957000},"score":1,"resource":{"primary":{"URL":"https:\/\/dx.plos.org\/10.1371\/journal.pcbi.1011324"}},"subtitle":[],"editor":[{"given":"Mingyao","family":"Li","sequence":"first","affiliation":[]}],"short-title":[],"issued":{"date-parts":[[2023,8,25]]},"references-count":78,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2023,8,25]]}},"URL":"https:\/\/doi.org\/10.1371\/journal.pcbi.1011324","relation":{"has-preprint":[{"id-type":"doi","id":"10.1101\/2021.10.27.466079","asserted-by":"object"}]},"ISSN":["1553-7358"],"issn-type":[{"type":"electronic","value":"1553-7358"}],"subject":[],"published":{"date-parts":[[2023,8,25]]}}}