{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T12:05:17Z","timestamp":1742645117147,"version":"3.37.3"},"update-to":[{"updated":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T00:00:00Z","timestamp":1673568000000},"DOI":"10.1371\/journal.pcbi.1010783","type":"new_version","source":"publisher","label":"New version"}],"reference-count":42,"publisher":"Public Library of Science (PLoS)","issue":"1","license":[{"start":{"date-parts":[[2023,1,3]],"date-time":"2023-01-03T00:00:00Z","timestamp":1672704000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100010689","name":"H2020 LEIT Biotechnology","doi-asserted-by":"publisher","award":["686282"],"id":[{"id":"10.13039\/100010689","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002347","name":"Bundesministerium f\u00fcr Bildung und Forschung","doi-asserted-by":"publisher","award":["01ZX1916A"],"id":[{"id":"10.13039\/501100002347","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["432325352"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["443187771"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["EXC 2047 390873048"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["EXC 2151 390685813"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000854","name":"Human Frontier Science Program","doi-asserted-by":"publisher","award":["LT000259\/2019-L1"],"id":[{"id":"10.13039\/501100000854","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Cancer Institute","award":["U54-CA225088"]}],"content-domain":{"domain":["www.ploscompbiol.org"],"crossmark-restriction":false},"short-container-title":["PLoS Comput Biol"],"abstract":"Dynamical models in the form of systems of ordinary differential equations have become a standard tool in systems biology. Many parameters of such models are usually unknown and have to be inferred from experimental data. Gradient-based optimization has proven to be effective for parameter estimation. However, computing gradients becomes increasingly costly for larger models, which are required for capturing the complex interactions of multiple biochemical pathways. Adjoint sensitivity analysis has been pivotal for working with such large models, but methods tailored for steady-state data are currently not available. We propose a new adjoint method for computing gradients, which is applicable if the experimental data include steady-state measurements. The method is based on a reformulation of the backward integration problem to a system of linear algebraic equations. The evaluation of the proposed method using real-world problems shows a speedup of total simulation time by a factor of up to 4.4. Our results demonstrate that the proposed approach can achieve a substantial improvement in computation time, in particular for large-scale models, where computational efficiency is critical.<\/jats:p>","DOI":"10.1371\/journal.pcbi.1010783","type":"journal-article","created":{"date-parts":[[2023,1,3]],"date-time":"2023-01-03T19:51:15Z","timestamp":1672775475000},"page":"e1010783","update-policy":"https:\/\/doi.org\/10.1371\/journal.pcbi.corrections_policy","source":"Crossref","is-referenced-by-count":6,"title":["Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks"],"prefix":"10.1371","volume":"19","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-7626-8420","authenticated-orcid":true,"given":"Polina","family":"Lakrisenko","sequence":"first","affiliation":[]},{"given":"Paul","family":"Stapor","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9524-6633","authenticated-orcid":true,"given":"Stephan","family":"Grein","sequence":"additional","affiliation":[]},{"given":"\u0141ukasz","family":"Paszkowski","sequence":"additional","affiliation":[]},{"given":"Dilan","family":"Pathirana","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5360-4292","authenticated-orcid":true,"given":"Fabian","family":"Fr\u00f6hlich","sequence":"additional","affiliation":[]},{"given":"Glenn Terje","family":"Lines","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9963-6057","authenticated-orcid":true,"given":"Daniel","family":"Weindl","sequence":"additional","affiliation":[]},{"given":"Jan","family":"Hasenauer","sequence":"additional","affiliation":[]}],"member":"340","published-online":{"date-parts":[[2023,1,3]]},"reference":[{"issue":"10","key":"pcbi.1010783.ref001","doi-asserted-by":"crossref","DOI":"10.3390\/cancers14102379","article-title":"Disentangling ERBB Signaling in Breast Cancer Subtypes\u2014A Model-Based Analysis","volume":"14","author":"S Kemmer","year":"2022","journal-title":"Cancers"},{"issue":"12","key":"pcbi.1010783.ref002","first-page":"1","article-title":"Combination treatment optimization using a pan-cancer pathway model","volume":"17","author":"R Schmucker","year":"2022","journal-title":"PLOS Computational Biology"},{"issue":"3","key":"pcbi.1010783.ref003","doi-asserted-by":"crossref","first-page":"1028","DOI":"10.1073\/pnas.0237333100","article-title":"Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling","volume":"100","author":"I Swameye","year":"2003","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"5","key":"pcbi.1010783.ref004","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1038\/s43588-021-00074-3","article-title":"Dynamic flux balance analysis of whole-body metabolism for type 1 diabetes","volume":"1","author":"M Ben Guebila","year":"2021","journal-title":"Nature Computational Science"},{"issue":"8","key":"pcbi.1010783.ref005","doi-asserted-by":"crossref","first-page":"104681","DOI":"10.1016\/j.isci.2022.104681","article-title":"Quantitative modeling of pentose phosphate pathway response to oxidative stress reveals a cooperative regulatory strategy","volume":"25","author":"J Hurbain","year":"2022","journal-title":"iScience"},{"issue":"1","key":"pcbi.1010783.ref006","doi-asserted-by":"crossref","first-page":"3626","DOI":"10.1038\/s41467-022-31306-3","article-title":"A microfluidic optimal experimental design platform for forward design of cell-free genetic networks","volume":"13","author":"B van Sluijs","year":"2022","journal-title":"Nature Communications"},{"issue":"6","key":"pcbi.1010783.ref007","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1016\/j.cels.2020.11.003","article-title":"H4K20 Methylation Is Differently Regulated by Dilution and Demethylation in Proliferating and Cell-Cycle-Arrested Xenopus Embryos","volume":"11","author":"L Schuh","year":"2020","journal-title":"Cell Systems"},{"issue":"D1","key":"pcbi.1010783.ref008","doi-asserted-by":"crossref","first-page":"D498","DOI":"10.1093\/nar\/gkaa1025","article-title":"BRENDA, the ELIXIR core data resource in 2021: new developments and updates","volume":"49","author":"A Chang","year":"2020","journal-title":"Nucleic Acids Research"},{"issue":"D1","key":"pcbi.1010783.ref009","doi-asserted-by":"crossref","first-page":"D790","DOI":"10.1093\/nar\/gkr1046","article-title":"SABIO-RK\u2014database for biochemical reaction kinetics","volume":"40","author":"U Wittig","year":"2011","journal-title":"Nucleic Acids Research"},{"issue":"1","key":"pcbi.1010783.ref010","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1186\/1752-0509-5-198","article-title":"Reproducible computational biology experiments with SED-ML\u2014The Simulation Experiment Description Markup Language","volume":"5","author":"D Waltemath","year":"2011","journal-title":"BMC Systems Biology"},{"issue":"1","key":"pcbi.1010783.ref011","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pcbi.1008646","article-title":"PEtab\u2014Interoperable specification of parameter estimation problems in systems biology","volume":"17","author":"L Schmiester","year":"2021","journal-title":"PLOS Computational Biology"},{"issue":"6","key":"pcbi.1010783.ref012","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1016\/j.cels.2018.10.013","article-title":"Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic Pan-Cancer Pathway Model","volume":"7","author":"F Fr\u00f6hlich","year":"2018","journal-title":"Cell Systems"},{"issue":"1","key":"pcbi.1010783.ref013","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.cels.2016.01.002","article-title":"Combinatorial Histone Acetylation Patterns Are Generated by Motif-Specific Reactions","volume":"2","author":"T Blasi","year":"2016","journal-title":"Cell Syst"},{"issue":"34","key":"pcbi.1010783.ref014","doi-asserted-by":"crossref","first-page":"13549","DOI":"10.1073\/pnas.1205707109","article-title":"Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3","volume":"109","author":"Y Zheng","year":"2012","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"pcbi.1010783.ref015","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.ymben.2020.03.001","article-title":"K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data","volume":"61","author":"S Gopalakrishnan","year":"2020","journal-title":"Metabolic Engineering"},{"issue":"1","key":"pcbi.1010783.ref016","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0301-4622(90)80056-D","article-title":"Applications of graph theory to enzyme kinetics and protein folding kinetics","volume":"35","author":"KC Chou","year":"1990","journal-title":"Biophysical Chemistry"},{"issue":"4","key":"pcbi.1010783.ref017","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1137\/110847305","article-title":"Variable Elimination in Chemical Reaction Networks with Mass-Action Kinetics","volume":"72","author":"E Feliu","year":"2012","journal-title":"SIAM Journal on Applied Mathematics"},{"issue":"2","key":"pcbi.1010783.ref018","doi-asserted-by":"crossref","first-page":"e1002901","DOI":"10.1371\/journal.pcbi.1002901","article-title":"Characterizing the Relationship between Steady State and Response Using Analytical Expressions for the Steady States of Mass Action Models","volume":"9","author":"PM Loriaux","year":"2013","journal-title":"PLoS Computational Biology"},{"key":"pcbi.1010783.ref019","doi-asserted-by":"crossref","DOI":"10.3389\/fcell.2016.00041","article-title":"Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models","volume":"4","author":"M Rosenblatt","year":"2016","journal-title":"Frontiers in Cell and Developmental Biology"},{"issue":"1","key":"pcbi.1010783.ref020","doi-asserted-by":"crossref","DOI":"10.1186\/s12918-016-0319-7","article-title":"Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints","volume":"10","author":"A Fiedler","year":"2016","journal-title":"BMC Systems Biology"},{"issue":"26","key":"pcbi.1010783.ref021","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.ifacol.2019.12.232","article-title":"Efficient computation of steady states in large-scale ODE models of biochemical reaction networks","volume":"52","author":"G Terje Lines","year":"2019","journal-title":"IFAC-PapersOnLine"},{"key":"pcbi.1010783.ref022","first-page":"385","volume-title":"Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes","author":"F Fr\u00f6hlich","year":"2019"},{"issue":"5","key":"pcbi.1010783.ref023","doi-asserted-by":"crossref","first-page":"830","DOI":"10.1093\/bioinformatics\/bty736","article-title":"Benchmarking optimization methods for parameter estimation in large kinetic models","volume":"35","author":"AF Villaverde","year":"2018","journal-title":"Bioinformatics"},{"issue":"9","key":"pcbi.1010783.ref024","doi-asserted-by":"crossref","first-page":"e74335","DOI":"10.1371\/journal.pone.0074335","article-title":"Lessons Learned from Quantitative Dynamical Modeling in Systems Biology","volume":"8","author":"A Raue","year":"2013","journal-title":"PLoS ONE"},{"key":"pcbi.1010783.ref025","doi-asserted-by":"crossref","unstructured":"Naumann U. The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation. No. 24 in Software, Environments, and Tools. Philadelphia, PA: SIAM; 2012. Available from: http:\/\/bookstore.siam.org\/se24.","DOI":"10.1137\/1.9781611972078"},{"issue":"1","key":"pcbi.1010783.ref026","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pcbi.1005331","article-title":"Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks","volume":"13","author":"F Fr\u00f6hlich","year":"2017","journal-title":"PLOS Computational Biology"},{"issue":"2","key":"pcbi.1010783.ref027","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1093\/bioinformatics\/btz581","article-title":"Efficient parameterization of large-scale dynamic models based on relative measurements","volume":"36","author":"L Schmiester","year":"2019","journal-title":"Bioinformatics"},{"issue":"17","key":"pcbi.1010783.ref028","doi-asserted-by":"crossref","first-page":"3073","DOI":"10.1093\/bioinformatics\/btz020","article-title":"Benchmark problems for dynamic modeling of intracellular processes","volume":"35","author":"H Hass","year":"2019","journal-title":"Bioinformatics"},{"key":"pcbi.1010783.ref029","article-title":"A protocol for dynamic model calibration","author":"AF Villaverde","year":"2021","journal-title":"Briefings in Bioinformatics"},{"issue":"1","key":"pcbi.1010783.ref030","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1080\/13647830.2018.1495845","article-title":"Adjoint-based sensitivity analysis of quantities of interest of complex combustion models","volume":"23","author":"M Lemke","year":"2019","journal-title":"Combustion Theory and Modelling"},{"issue":"1","key":"pcbi.1010783.ref031","doi-asserted-by":"crossref","first-page":"2696","DOI":"10.1038\/s41598-021-82196-2","article-title":"Benchmarking of numerical integration methods for ODE models of biological systems","volume":"11","author":"P St\u00e4dter","year":"2021","journal-title":"Scientific Reports"},{"key":"pcbi.1010783.ref032","article-title":"Biological networks with singular Jacobians: their origins and adaptation criteria","author":"T Oellerich","year":"2021","journal-title":"bioRxiv"},{"issue":"1","key":"pcbi.1010783.ref033","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1006\/inco.1994.1067","article-title":"An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations","volume":"113","author":"E Contejean","year":"1994","journal-title":"Inf Comput"},{"key":"pcbi.1010783.ref034","doi-asserted-by":"crossref","DOI":"10.1016\/S0304-3975(00)00229-2","article-title":"On computing Hilbert bases via the Elliot-MacMahon algorithm","volume":"263","author":"D Pasechnik","year":"2001","journal-title":"Theoretical Computer Science"},{"issue":"7","key":"pcbi.1010783.ref035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0100750","article-title":"Identifying All Moiety Conservation Laws in Genome-Scale Metabolic Networks","volume":"9","author":"A De Martino","year":"2014","journal-title":"PLOS ONE"},{"issue":"20","key":"pcbi.1010783.ref036","doi-asserted-by":"crossref","first-page":"3676","DOI":"10.1093\/bioinformatics\/btab227","article-title":"AMICI: high-performance sensitivity analysis for large ordinary differential equation models","volume":"37","author":"F Fr\u00f6hlich","year":"2021","journal-title":"Bioinformatics"},{"issue":"3","key":"pcbi.1010783.ref037","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1145\/1089014.1089020","article-title":"SUNDIALS: Suite of Nonlinear and Differential\/Algebraic Equation Solvers","volume":"31","author":"AC Hindmarsh","year":"2005","journal-title":"ACM Trans Math Softw"},{"key":"pcbi.1010783.ref038","doi-asserted-by":"crossref","unstructured":"Fr\u00f6hlich F, Weindl D, Sch\u00e4lte Y, Pathirana D, Paszkowski L, Lines GT, et al.. AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models; 2022. Available from: https:\/\/doi.org\/10.5281\/zenodo.6850965.","DOI":"10.1093\/bioinformatics\/btab227"},{"key":"pcbi.1010783.ref039","unstructured":"Sch\u00e4lte Y, Fr\u00f6hlich F, Stapor P, Vanhoefer J, Weindl D, Jost PJ, et al.. pyPESTO\u2014Parameter EStimation TOolbox for python; 2022. Available from: https:\/\/zenodo.org\/record\/6606687."},{"issue":"7","key":"pcbi.1010783.ref040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pcbi.1010322","article-title":"Fides: Reliable trust-region optimization for parameter estimation of ordinary differential equation models","volume":"18","author":"F Fr\u00f6hlich","year":"2022","journal-title":"PLOS Computational Biology"},{"key":"pcbi.1010783.ref041","unstructured":"Froehlich F, Weindl D. Fides; 2021. Available from: https:\/\/doi.org\/10.5281\/zenodo.6038127."},{"key":"pcbi.1010783.ref042","unstructured":"A collection of mathematical models with experimental data in the PEtab format; 2022. Available from: https:\/\/github.com\/Benchmarking-Initiative\/Benchmark-Models-PEtab\/."}],"updated-by":[{"updated":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T00:00:00Z","timestamp":1673568000000},"DOI":"10.1371\/journal.pcbi.1010783","type":"new_version","source":"publisher","label":"New version"}],"container-title":["PLOS Computational Biology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dx.plos.org\/10.1371\/journal.pcbi.1010783","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,19]],"date-time":"2023-03-19T21:45:26Z","timestamp":1679262326000},"score":1,"resource":{"primary":{"URL":"https:\/\/dx.plos.org\/10.1371\/journal.pcbi.1010783"}},"subtitle":[],"editor":[{"given":"Attila","family":"Csik\u00e1sz-Nagy","sequence":"first","affiliation":[]}],"short-title":[],"issued":{"date-parts":[[2023,1,3]]},"references-count":42,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,1,3]]}},"URL":"https:\/\/doi.org\/10.1371\/journal.pcbi.1010783","relation":{"has-preprint":[{"id-type":"doi","id":"10.1101\/2022.08.08.503176","asserted-by":"object"}]},"ISSN":["1553-7358"],"issn-type":[{"type":"electronic","value":"1553-7358"}],"subject":[],"published":{"date-parts":[[2023,1,3]]}}}