{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T13:07:06Z","timestamp":1740143226384,"version":"3.37.3"},"update-to":[{"updated":{"date-parts":[[2021,6,11]],"date-time":"2021-06-11T00:00:00Z","timestamp":1623369600000},"DOI":"10.1371\/journal.pcbi.1009044","type":"new_version","source":"publisher","label":"New version"}],"reference-count":57,"publisher":"Public Library of Science (PLoS)","issue":"6","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Key-Area Research and Development Program of Guangdong Province of China","award":["2020B0101350001"]},{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"crossref","award":["61802157"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Natural Science Foundation of Jiangxi Province of China","award":["20192BAB217004"]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2020M671902"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Shenzhen Research Institute of Big Data","award":["2019ORF01002"]},{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"crossref","award":["61731018"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"crossref","award":["11661141019"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"crossref","award":["61621003"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"National Ten Thousand Talent Program for Young Top-notch Talents"},{"name":"National Key Research and Development Program of China","award":["2019YFA0709501"]},{"name":"CAS Frontier Science Research Key Project for Top Young Scientist","award":["QYZDB-SSW-SYS008"]}],"content-domain":{"domain":["www.ploscompbiol.org"],"crossmark-restriction":false},"short-container-title":["PLoS Comput Biol"],"abstract":"Existing studies have demonstrated that dysregulation of microRNAs (miRNAs or miRs) is involved in the initiation and progression of cancer. Many efforts have been devoted to identify microRNAs as potential biomarkers for cancer diagnosis, prognosis and therapeutic targets. With the rapid development of miRNA sequencing technology, a vast amount of miRNA expression data for multiple cancers has been collected. These invaluable data repositories provide new paradigms to explore the relationship between miRNAs and cancer. Thus, there is an urgent need to explore the complex cancer-related miRNA-gene patterns by integrating multi-omics data in a pan-cancer paradigm. In this study, we present a tensor sparse canonical correlation analysis (TSCCA) method for identifying cancer-related miRNA-gene modules across multiple cancers. TSCCA is able to overcome the drawbacks of existing solutions and capture both the cancer-shared and specific miRNA-gene co-expressed modules with better biological interpretations. We comprehensively evaluate the performance of TSCCA using a set of simulated data and matched miRNA\/gene expression data across 33 cancer types from the TCGA database. We uncover several dysfunctional miRNA-gene modules with important biological functions and statistical significance. These modules can advance our understanding of miRNA regulatory mechanisms of cancer and provide insights into miRNA-based treatments for cancer.<\/jats:p>","DOI":"10.1371\/journal.pcbi.1009044","type":"journal-article","created":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T20:54:17Z","timestamp":1622580857000},"page":"e1009044","update-policy":"https:\/\/doi.org\/10.1371\/journal.pcbi.corrections_policy","source":"Crossref","is-referenced-by-count":11,"title":["TSCCA: A tensor sparse CCA method for detecting microRNA-gene patterns from multiple cancers"],"prefix":"10.1371","volume":"17","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-2558-2911","authenticated-orcid":true,"given":"Wenwen","family":"Min","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1349-2764","authenticated-orcid":true,"given":"Tsung-Hui","family":"Chang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0192-7118","authenticated-orcid":true,"given":"Shihua","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xiang","family":"Wan","sequence":"additional","affiliation":[]}],"member":"340","published-online":{"date-parts":[[2021,6,1]]},"reference":[{"issue":"6","key":"pcbi.1009044.ref001","doi-asserted-by":"crossref","first-page":"394","DOI":"10.3322\/caac.21492","article-title":"Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"68","author":"F Bray","year":"2018","journal-title":"CA Cancer J Clin"},{"issue":"13","key":"pcbi.1009044.ref002","doi-asserted-by":"crossref","first-page":"e76","DOI":"10.1093\/nar\/gkz281","article-title":"Data-driven characterization of molecular phenotypes across heterogeneous sample collections","volume":"47","author":"J Mehtonen","year":"2019","journal-title":"Nucleic Acids Res"},{"issue":"7","key":"pcbi.1009044.ref003","doi-asserted-by":"crossref","first-page":"1551","DOI":"10.1016\/j.clinthera.2016.03.026","article-title":"Current challenges in cancer treatment","volume":"38","author":"J Zugazagoitia","year":"2016","journal-title":"Clin Ther"},{"issue":"1","key":"pcbi.1009044.ref004","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1124\/pr.118.016253","article-title":"Personal mutanomes meet modern oncology drug discovery and precision health","volume":"71","author":"F Cheng","year":"2019","journal-title":"Pharmacol Rev"},{"issue":"12","key":"pcbi.1009044.ref005","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1038\/nrg.2016.134","article-title":"A network-biology perspective of microRNA function and dysfunction in cancer","volume":"17","author":"CP Bracken","year":"2016","journal-title":"Nat Rev Genet"},{"issue":"8","key":"pcbi.1009044.ref006","doi-asserted-by":"crossref","first-page":"1226","DOI":"10.1093\/bioinformatics\/btu811","article-title":"Identifying cancer-related microRNAs based on gene expression data","volume":"31","author":"XM Zhao","year":"2014","journal-title":"Bioinformatics"},{"issue":"2","key":"pcbi.1009044.ref007","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.ccr.2012.12.020","article-title":"Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer","volume":"23","author":"D Yang","year":"2013","journal-title":"Cancer Cell"},{"issue":"15","key":"pcbi.1009044.ref008","doi-asserted-by":"crossref","first-page":"7753","DOI":"10.1093\/nar\/gkz638","article-title":"Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer","volume":"47","author":"X Lai","year":"2019","journal-title":"Nucleic Acids Res"},{"issue":"D1","key":"pcbi.1009044.ref009","doi-asserted-by":"crossref","first-page":"D155","DOI":"10.1093\/nar\/gky1141","article-title":"miRBase: from microRNA sequences to function","volume":"47","author":"A Kozomara","year":"2018","journal-title":"Nucleic Acids Res"},{"issue":"18","key":"pcbi.1009044.ref010","doi-asserted-by":"crossref","first-page":"3211","DOI":"10.1093\/bioinformatics\/bty320","article-title":"miRNACancerMAP: an integrative web server inferring miRNA regulation network for cancer","volume":"34","author":"Y Tong","year":"2018","journal-title":"Bioinformatics"},{"key":"pcbi.1009044.ref011","doi-asserted-by":"crossref","first-page":"e05005","DOI":"10.7554\/eLife.05005","article-title":"Predicting effective microRNA target sites in mammalian mRNAs","volume":"4","author":"V Agarwal","year":"2015","journal-title":"Elife"},{"issue":"D1","key":"pcbi.1009044.ref012","doi-asserted-by":"crossref","first-page":"D991","DOI":"10.1093\/nar\/gks1193","article-title":"NCBI GEO: archive for functional genomics data sets\u2014update","volume":"41","author":"T Barrett","year":"2012","journal-title":"Nucleic Acids Res"},{"issue":"2","key":"pcbi.1009044.ref013","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/j.cell.2018.03.022","article-title":"Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer","volume":"173","author":"KA Hoadley","year":"2018","journal-title":"Cell"},{"key":"pcbi.1009044.ref014","doi-asserted-by":"crossref","first-page":"170157","DOI":"10.1038\/sdata.2017.157","article-title":"Small non-coding RNA transcriptome of the NCI-60 cell line panel","volume":"4","author":"EA Marshall","year":"2017","journal-title":"Sci Data"},{"issue":"13","key":"pcbi.1009044.ref015","doi-asserted-by":"crossref","first-page":"i401","DOI":"10.1093\/bioinformatics\/btr206","article-title":"A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules","volume":"27","author":"S Zhang","year":"2011","journal-title":"Bioinformatics"},{"issue":"4","key":"pcbi.1009044.ref016","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1109\/TNB.2016.2556744","article-title":"A two-stage method to identify joint modules from matched microRNA and mRNA expression data","volume":"15","author":"W Min","year":"2016","journal-title":"IEEE Trans Nanobioscience"},{"issue":"3","key":"pcbi.1009044.ref017","doi-asserted-by":"crossref","first-page":"e17","DOI":"10.1093\/nar\/gkt1318","article-title":"Discovery and visualization of miRNA\u2013mRNA functional modules within integrated data using bicluster analysis","volume":"42","author":"K Bryan","year":"2013","journal-title":"Nucleic Acids Res"},{"issue":"18","key":"pcbi.1009044.ref018","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1093\/bioinformatics\/btu373","article-title":"Mirsynergy: detecting synergistic miRNA regulatory modules by overlapping neighbourhood expansion","volume":"30","author":"Y Li","year":"2014","journal-title":"Bioinformatics"},{"issue":"1","key":"pcbi.1009044.ref019","doi-asserted-by":"crossref","first-page":"e1004042","DOI":"10.1371\/journal.pcbi.1004042","article-title":"A computational approach to identifying gene-microRNA modules in cancer","volume":"11","author":"D Jin","year":"2015","journal-title":"PLoS Comput Biol"},{"issue":"21","key":"pcbi.1009044.ref020","doi-asserted-by":"crossref","first-page":"4336","DOI":"10.1093\/bioinformatics\/btz226","article-title":"Unsupervised discovery of phenotype-specific multi-omics networks","volume":"35","author":"WJ Shi","year":"2019","journal-title":"Bioinformatics"},{"issue":"9","key":"pcbi.1009044.ref021","doi-asserted-by":"crossref","first-page":"e53","DOI":"10.1093\/nar\/gkz139","article-title":"Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets","volume":"47","author":"S Yoon","year":"2019","journal-title":"Nucleic Acids Res"},{"issue":"1","key":"pcbi.1009044.ref022","doi-asserted-by":"crossref","first-page":"508","DOI":"10.1186\/s12864-017-3906-0","article-title":"A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data","volume":"18","author":"Y Li","year":"2017","journal-title":"BMC Genomics"},{"issue":"5","key":"pcbi.1009044.ref023","first-page":"761","article-title":"Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns","volume":"18","author":"X Yang","year":"2016","journal-title":"Brief Bioinform"},{"issue":"2","key":"pcbi.1009044.ref024","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1016\/j.cell.2018.03.027","article-title":"A pan-cancer analysis of enhancer expression in nearly 9000 patient samples","volume":"173","author":"H Chen","year":"2018","journal-title":"Cell"},{"issue":"7696","key":"pcbi.1009044.ref025","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1038\/nature25795","article-title":"Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours","volume":"555","author":"X Ma","year":"2018","journal-title":"Nature"},{"key":"pcbi.1009044.ref026","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.ebiom.2019.03.082","article-title":"Pan-cancer analysis on microRNA-associated gene activation","volume":"43","author":"H Tan","year":"2019","journal-title":"EBioMedicine"},{"issue":"D1","key":"pcbi.1009044.ref027","first-page":"D148","article-title":"miRTarBase 2020: updates to the experimentally validated microRNA\u2013target interaction database","volume":"48","author":"HY Huang","year":"2019","journal-title":"Nucleic Acids Res"},{"issue":"D1","key":"pcbi.1009044.ref028","first-page":"D489","article-title":"Pathway Commons 2019 Update: integration, analysis and exploration of pathway data","volume":"48","author":"I Rodchenkov","year":"2019","journal-title":"Nucleic Acids Res"},{"issue":"5","key":"pcbi.1009044.ref029","doi-asserted-by":"crossref","first-page":"638","DOI":"10.1093\/bioinformatics\/btt014","article-title":"miRCancer: a microRNA\u2013cancer association database constructed by text mining on literature","volume":"29","author":"B Xie","year":"2013","journal-title":"Bioinformatics"},{"issue":"6","key":"pcbi.1009044.ref030","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.cels.2015.12.004","article-title":"The molecular signatures database hallmark gene set collection","volume":"1","author":"A Liberzon","year":"2015","journal-title":"Cell Syst"},{"issue":"1","key":"pcbi.1009044.ref031","doi-asserted-by":"crossref","first-page":"28","DOI":"10.2202\/1544-6115.1470","article-title":"Extensions of sparse canonical correlation analysis with applications to genomic data","volume":"8","author":"DM Witten","year":"2009","journal-title":"Stat Appl Genet Mol Biol"},{"key":"pcbi.1009044.ref032","first-page":"316","volume-title":"ICML","author":"BHW Chang","year":"2013"},{"issue":"1","key":"pcbi.1009044.ref033","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2202\/1544-6115.1406","article-title":"Sparse canonical correlation analysis with application to genomic data integration","volume":"8","author":"E Parkhomenko","year":"2009","journal-title":"Stat Appl Genet Mol Biol"},{"issue":"12","key":"pcbi.1009044.ref034","doi-asserted-by":"crossref","first-page":"3050","DOI":"10.1109\/TPAMI.2013.104","article-title":"Sparse canonical correlation analysis: New formulation and algorithm","volume":"35","author":"D Chu","year":"2013","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"pcbi.1009044.ref035","first-page":"1148","volume-title":"ICML","author":"M Asteris","year":"2016"},{"issue":"11","key":"pcbi.1009044.ref036","doi-asserted-by":"crossref","first-page":"e1005752","DOI":"10.1371\/journal.pcbi.1005752","article-title":"mixOmics: An R package for omics feature selection and multiple data integration","volume":"13","author":"F Rohart","year":"2017","journal-title":"PLoS Comput Biol"},{"issue":"6","key":"pcbi.1009044.ref037","doi-asserted-by":"crossref","first-page":"1018","DOI":"10.1093\/bioinformatics\/bty726","article-title":"Penalized co-inertia analysis with applications to-omics data","volume":"35","author":"EJ Min","year":"2018","journal-title":"Bioinformatics"},{"issue":"3","key":"pcbi.1009044.ref038","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1137\/07070111X","article-title":"Tensor decompositions and applications","volume":"51","author":"TG Kolda","year":"2009","journal-title":"SIAM Rev"},{"issue":"2","key":"pcbi.1009044.ref039","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1007\/s10915-017-0376-0","article-title":"A globally convergent algorithm for nonconvex optimization based on block coordinate update","volume":"72","author":"Y Xu","year":"2017","journal-title":"J Sci Comput"},{"issue":"2","key":"pcbi.1009044.ref040","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/j.cell.2018.03.035","article-title":"Oncogenic signaling pathways in the cancer genome atlas","volume":"173","author":"F Sanchez-Vega","year":"2018","journal-title":"Cell"},{"issue":"40","key":"pcbi.1009044.ref041","doi-asserted-by":"crossref","first-page":"69125","DOI":"10.18632\/oncotarget.19096","article-title":"Prognostic role of miR-17-92 family in human cancers: evaluation of multiple prognostic outcomes","volume":"8","author":"F Liu","year":"2017","journal-title":"Oncotarget"},{"issue":"4","key":"pcbi.1009044.ref042","doi-asserted-by":"crossref","first-page":"756","DOI":"10.1038\/emboj.2010.358","article-title":"Targeting Notch signalling by the conserved miR-8\/200 microRNA family in development and cancer cells","volume":"30","author":"DM Vallejo","year":"2011","journal-title":"EMBO J"},{"issue":"2","key":"pcbi.1009044.ref043","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1038\/nrc.2016.138","article-title":"Cell cycle proteins as promising targets in cancer therapy","volume":"17","author":"T Otto","year":"2017","journal-title":"Nat Rev Cancer"},{"issue":"6","key":"pcbi.1009044.ref044","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1016\/j.molonc.2012.09.006","article-title":"MicroRNA and cancer","volume":"6","author":"MD Jansson","year":"2012","journal-title":"Mol Oncol"},{"key":"pcbi.1009044.ref045","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.semcancer.2016.01.001","article-title":"DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities","volume":"37\u201338","author":"AS Boyer","year":"2016","journal-title":"Semin Cancer Biol"},{"issue":"1","key":"pcbi.1009044.ref046","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1186\/s13046-019-1180-5","article-title":"MicroRNA based theranostics for brain cancer: basic principles","volume":"38","author":"GE Petrescu","year":"2019","journal-title":"J Exp Clin Cancer Res"},{"issue":"1","key":"pcbi.1009044.ref047","first-page":"284","article-title":"Suppression of microRNA-130b inhibits glioma cell proliferation and invasion, and induces apoptosis by PTEN\/AKT signaling","volume":"41","author":"JJ Gu","year":"2018","journal-title":"Int J Mol Med"},{"issue":"6","key":"pcbi.1009044.ref048","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41419-020-2621-y","article-title":"Exosomal miR-130b-3p targets SIK1 to inhibit medulloblastoma tumorigenesis","volume":"11","author":"S Huang","year":"2020","journal-title":"Cell Death Dis"},{"key":"pcbi.1009044.ref049","first-page":"27","volume-title":"Artificial Intelligence and Statistics","author":"G Allen","year":"2012"},{"issue":"5","key":"pcbi.1009044.ref050","first-page":"95","article-title":"Triclustering algorithms for three-dimensional data analysis: a comprehensive survey","volume":"51","author":"R Henriques","year":"2018","journal-title":"ACM Comput Surv"},{"issue":"6","key":"pcbi.1009044.ref051","doi-asserted-by":"crossref","first-page":"e8124","DOI":"10.15252\/msb.20178124","article-title":"Multi-Omics Factor Analysis: A framework for unsupervised integration of multi-omics data sets","volume":"14","author":"R Argelaguet","year":"2018","journal-title":"Mol Syst Biol"},{"issue":"20","key":"pcbi.1009044.ref052","doi-asserted-by":"crossref","first-page":"10546","DOI":"10.1093\/nar\/gky889","article-title":"Multi-omic and multi-view clustering algorithms: review and cancer benchmark","volume":"46","author":"N Rappoport","year":"2018","journal-title":"Nucleic Acids Res"},{"issue":"6","key":"pcbi.1009044.ref053","doi-asserted-by":"crossref","first-page":"2011","DOI":"10.1093\/bib\/bbz138","article-title":"Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration","volume":"21","author":"M Pierre-Jean","year":"2020","journal-title":"Brief Bioinform"},{"issue":"7449","key":"pcbi.1009044.ref054","doi-asserted-by":"crossref","first-page":"378","DOI":"10.1038\/nature12108","article-title":"The shaping and functional consequences of the microRNA landscape in breast cancer","volume":"497","author":"H Dvinge","year":"2013","journal-title":"Nature"},{"issue":"3","key":"pcbi.1009044.ref055","doi-asserted-by":"crossref","first-page":"740","DOI":"10.1016\/j.cell.2016.06.017","article-title":"A landscape of pharmacogenomic interactions in cancer","volume":"166","author":"F Iorio","year":"2016","journal-title":"Cell"},{"issue":"7757","key":"pcbi.1009044.ref056","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1038\/s41586-019-1186-3","article-title":"Next-generation characterization of the Cancer Cell Line Encyclopedia","volume":"569","author":"M Ghandi","year":"2019","journal-title":"Nature"},{"issue":"11","key":"pcbi.1009044.ref057","doi-asserted-by":"crossref","first-page":"1724","DOI":"10.1093\/bioinformatics\/btw059","article-title":"Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data","volume":"32","author":"J Chen","year":"2016","journal-title":"Bioinformatics"}],"updated-by":[{"updated":{"date-parts":[[2021,6,11]],"date-time":"2021-06-11T00:00:00Z","timestamp":1623369600000},"DOI":"10.1371\/journal.pcbi.1009044","type":"new_version","source":"publisher","label":"New version"}],"container-title":["PLOS Computational Biology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dx.plos.org\/10.1371\/journal.pcbi.1009044","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,6,11]],"date-time":"2021-06-11T17:52:35Z","timestamp":1623433955000},"score":1,"resource":{"primary":{"URL":"https:\/\/dx.plos.org\/10.1371\/journal.pcbi.1009044"}},"subtitle":[],"editor":[{"given":"Moritz","family":"Gerstung","sequence":"first","affiliation":[]}],"short-title":[],"issued":{"date-parts":[[2021,6,1]]},"references-count":57,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2021,6,1]]}},"URL":"https:\/\/doi.org\/10.1371\/journal.pcbi.1009044","relation":{},"ISSN":["1553-7358"],"issn-type":[{"type":"electronic","value":"1553-7358"}],"subject":[],"published":{"date-parts":[[2021,6,1]]}}}