{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T06:10:25Z","timestamp":1714543825685},"reference-count":20,"publisher":"Duke University Press","issue":"4","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Notre Dame J. Formal Logic"],"published-print":{"date-parts":[[2012,1,1]]},"DOI":"10.1215\/00294527-1722764","type":"journal-article","created":{"date-parts":[[2012,11,8]],"date-time":"2012-11-08T14:20:17Z","timestamp":1352384417000},"source":"Crossref","is-referenced-by-count":0,"title":["The Usual Model Construction for NFU Preserves Information"],"prefix":"10.1215","volume":"53","author":[{"given":"M. Randall","family":"Holmes","sequence":"first","affiliation":[]}],"member":"73","reference":[{"key":"1","unstructured":"[1] Boffa, M., \u201cZFJ and the consistency problem for NF,\u201d pp. 102\u20136 in Jahrbuch der Kurt G\u00f6del Gesellschaft 1988<\/i>."},{"key":"2","doi-asserted-by":"publisher","unstructured":"[2] Crabb\u00e9, M., \u201cOn the set of atoms,\u201d Logic Journal of the IGPL<\/i>, vol. 8 (2000), pp. 751\u201359.","DOI":"10.1093\/jigpal\/8.6.751"},{"key":"3","doi-asserted-by":"crossref","unstructured":"[3] Ehrenfeucht, A., and A. Mostowksi, \u201cModels of axiomatic theories admitting automorphisms,\u201d Fundamenta Mathematicae<\/i>, vol. 43 (1956), pp. 50\u201368.","DOI":"10.4064\/fm-43-1-50-68"},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] Forster, T. E., Set Theory with a Universal Set: Exploring an Untyped Universe<\/i>, 2nd ed., vol. 31 of Oxford Logic Guides<\/i>, Oxford University Press, New York, 1995.","DOI":"10.1093\/oso\/9780198514770.001.0001"},{"key":"5","doi-asserted-by":"publisher","unstructured":"[5] Hailperin, T., \u201cA set of axioms for logic,\u201d Journal of Symbolic Logic<\/i>, vol. 9 (1944), pp. 1\u201319.","DOI":"10.2307\/2267307"},{"key":"6","unstructured":"[6] Hinnion, R., \u201cSur la th\u00e9orie des ensembles de Quine,\u201d Ph.D. dissertation, Universit\u00e9 libre de Bruxelles, Brussels, 1975."},{"key":"7","unstructured":"[7] Holmes, M. R., \u201cThe axiom of anti-foundation in Jensen\u2019s \u2018New Foundations with ur-elements,\u2019 \u201d Bulletin de la Societe Mathematique de la Belgique<\/i>, Series B<\/i>, vol. 43 (1991), pp. 167\u201379."},{"key":"8","unstructured":"[8] Holmes, M. R., Elementary Set Theory with a Universal Set<\/i>, vol. 10 of Cahiers du Centre de Logique<\/i>, Universit\u00e9 Catholique de Louvain, Louvain-la-Neuve, Belgium, 1998."},{"key":"9","doi-asserted-by":"crossref","unstructured":"[9] Jensen, R. B., \u201cOn the consistency of a slight (?) modification of Quine\u2019s \u2018New Foundations,\u2019 \u201d Synthese<\/i>, vol. 19 (1969), pp. 250\u201363.","DOI":"10.1007\/BF00568059"},{"key":"10","doi-asserted-by":"crossref","unstructured":"[10] Mac Lane, S., Mathematics, Form and Function<\/i>, Springer, New York, 1986.","DOI":"10.1007\/978-1-4612-4872-9"},{"key":"11","doi-asserted-by":"publisher","unstructured":"[11] Mathias, A. R. D., \u201cThe strength of Mac Lane set theory,\u201d Annals of Pure and Applied Logic<\/i>, vol. 110 (2001), pp. 107\u2013234.","DOI":"10.1016\/S0168-0072(00)00031-2"},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] Potter, M., Set Theory and Its Philosophy: A Critical Introduction<\/i>, Oxford University Press, New York, 2004.","DOI":"10.1093\/acprof:oso\/9780199269730.001.0001"},{"key":"13","doi-asserted-by":"publisher","unstructured":"[13] Quine, W. V. O., \u201cNew Foundations for Mathematical Logic,\u201d American Mathematical Monthly<\/i>, vol. 44 (1937), pp. 70\u201380.","DOI":"10.2307\/2300564"},{"key":"14","doi-asserted-by":"publisher","unstructured":"[14] Ramsey, F. P., \u201cThe foundations of mathematics,\u201d Proceedings of the London Mathematical Society (2)<\/i>, vol. 25 (1926), pp. 338\u201384.","DOI":"10.1112\/plms\/s2-25.1.338"},{"key":"15","unstructured":"[15] Scott, D., \u201cDefinitions by abstraction in axiomatic set theory\u201d (abstract 626t), Bulletin of the American Mathematical Society<\/i>, vol. 61 (1955), p. 442."},{"key":"16","unstructured":"[16] Scott, D., \u201cQuine\u2019s individuals,\u201d pp. 111\u201315 in Logic, Methodology and Philosophy of Science<\/i>, edited by E. Nagel, Stanford University Press, Stanford, 1962."},{"key":"17","doi-asserted-by":"publisher","unstructured":"[17] Specker, E. P., \u201cThe axiom of choice in Quine\u2019s \u2018New Foundations for Mathematical Logic,\u2019 \u201d Proceedings of the National Academy of Sciences of the U. S. A.<\/i>, vol. 39 (1953), pp. 972\u201375.","DOI":"10.1073\/pnas.39.9.972"},{"key":"18","unstructured":"[18] Wang, H., Logic, Computers, and Sets<\/i>, Chelsea, New York, 1970."},{"key":"19","unstructured":"[19] Whitehead, A. N., and B. Russell, Principia Mathematica<\/i>, 3 vols., Cambridge University Press, Cambridge, 1927."},{"key":"20","unstructured":"[20] Wiener, N., \u201cA simplification of the logic of relations,\u201d Proceedings of the Cambridge Philosophical Society<\/i>, vol. 17 (1914), pp. 387\u201390."}],"container-title":["Notre Dame Journal of Formal Logic"],"original-title":[],"link":[{"URL":"https:\/\/projecteuclid.org\/journalArticle\/Download?urlid=10.1215\/00294527-1722764","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T05:43:36Z","timestamp":1714542216000},"score":1,"resource":{"primary":{"URL":"https:\/\/projecteuclid.org\/journals\/notre-dame-journal-of-formal-logic\/volume-53\/issue-4\/The-Usual-Model-Construction-for-NFU-Preserves-Information\/10.1215\/00294527-1722764.full"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,1,1]]},"references-count":20,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2012,1,1]]}},"URL":"https:\/\/doi.org\/10.1215\/00294527-1722764","relation":{},"ISSN":["0029-4527"],"issn-type":[{"value":"0029-4527","type":"print"}],"subject":[],"published":{"date-parts":[[2012,1,1]]}}}