{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T09:45:28Z","timestamp":1743500728261,"version":"3.37.3"},"reference-count":101,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2020,10,9]],"date-time":"2020-10-09T00:00:00Z","timestamp":1602201600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2020,10,9]],"date-time":"2020-10-09T00:00:00Z","timestamp":1602201600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Brain Inf."],"published-print":{"date-parts":[[2020,12]]},"abstract":"Abstract<\/jats:title>Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders\u2014focusing on Alzheimer\u2019s disease, Parkinson\u2019s disease and schizophrenia\u2014from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.<\/jats:p>","DOI":"10.1186\/s40708-020-00112-2","type":"journal-article","created":{"date-parts":[[2020,10,9]],"date-time":"2020-10-09T12:02:59Z","timestamp":1602244979000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":235,"title":["Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer\u2019s disease, Parkinson\u2019s disease and schizophrenia"],"prefix":"10.1186","volume":"7","author":[{"given":"Manan Binth Taj","family":"Noor","sequence":"first","affiliation":[]},{"given":"Nusrat Zerin","family":"Zenia","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4604-5461","authenticated-orcid":false,"given":"M Shamim","family":"Kaiser","sequence":"additional","affiliation":[]},{"given":"Shamim Al","family":"Mamun","sequence":"additional","affiliation":[]},{"given":"Mufti","family":"Mahmud","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,10,9]]},"reference":[{"issue":"1","key":"112_CR1","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/S1474-4422(05)70285-4","volume":"5","author":"E Tolosa","year":"2006","unstructured":"Tolosa E, Wenning G, Poewe W (2006) The diagnosis of parkinson\u2019s disease. Lancet Neurol 5(1):75\u201386","journal-title":"Lancet Neurol"},{"issue":"4","key":"112_CR2","first-page":"719","volume":"32","author":"A Danielyan","year":"2009","unstructured":"Danielyan A, Nasrallah HA (2009) Neurological disorders in schizophrenia. Psychiatric Clinics 32(4):719\u2013757","journal-title":"Psychiatric Clinics"},{"key":"112_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40708-018-0080-3","volume":"5","author":"J Islam","year":"2018","unstructured":"Islam J, Zhang Y (2018) Brain mri analysis for alzheimer\u2019s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics 5:1\u201314. https:\/\/doi.org\/10.1186\/s40708-018-0080-3","journal-title":"Brain Informatics"},{"key":"112_CR4","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1016\/j.neurobiolaging.2016.10.027","volume":"50","author":"R Fontana","year":"2017","unstructured":"Fontana R, Agostini M, Murana E, Mahmud M, Scremin E, Rubega M, Sparacino G, Vassanelli S, Fasolato C (2017) Early hippocampal hyperexcitability in ps2a pp mice: role of mutant ps2 and app. Neurobiol Aging 50:64\u201376. https:\/\/doi.org\/10.1016\/j.neurobiolaging.2016.10.027","journal-title":"Neurobiol Aging"},{"issue":"1","key":"112_CR5","doi-asserted-by":"publisher","first-page":"54","DOI":"10.3390\/cells9010054","volume":"9","author":"A Leparulo","year":"2020","unstructured":"Leparulo A, Mahmud M, Scremin E, Pozzan T, Vassanelli S, Fasolato C (2020) Dampened slow oscillation connectivity anticipates amyloid deposition in the ps2a pp mouse model of alzheimer\u2019s disease. Cells 9(1):54. https:\/\/doi.org\/10.3390\/cells9010054","journal-title":"Cells"},{"key":"112_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1017\/S0033291719000151","volume":"49","author":"A Shatte","year":"2019","unstructured":"Shatte A, Hutchinson D, Teague S (2019) Machine learning in mental health: A scoping review of methods and applications. Psychol Med 49:1\u201323","journal-title":"Psychol Med"},{"key":"112_CR7","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1016\/j.jneumeth.2013.11.016","volume":"222","author":"C Salvatore","year":"2014","unstructured":"Salvatore C et al (2014) Machine learning on brain MRI data for differential diagnosis of Parkinson\u2019s disease and Progressive Supranuclear Palsy. J Neurosci Methods 222:230\u2013237","journal-title":"J Neurosci Methods"},{"key":"112_CR8","doi-asserted-by":"crossref","unstructured":"Mathew NA, Vivek RS, Anurenjan PR (2018) Early diagnosis of alzheimer\u2019s disease from mri images using pnn. Proc. IC4, 161\u2013164","DOI":"10.1109\/CETIC4.2018.8530910"},{"key":"112_CR9","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2016.00248","author":"M Mahmud","year":"2016","unstructured":"Mahmud M, Vassanelli S (2016) Processing and analysis of multichannel extracellular neuronal signals: State-of-the-art and challenges. Front Neurosci. https:\/\/doi.org\/10.3389\/fnins.2016.00248","journal-title":"Front Neurosci"},{"key":"112_CR10","doi-asserted-by":"publisher","unstructured":"Mahmud M, Vassanelli S (2019) Open-Source Tools for Processing and Analysis of In Vitro Extracellular Neuronal Signals. In: Chiappalone, M., Pasquale, V., Frega, M. (eds.) In Vitro Neuronal Networks: From Culturing Methods to Neuro-Technological Applications, pp. 233\u2013250. Springer, Cham. https:\/\/doi.org\/10.1007\/978-3-030-11135-9_10","DOI":"10.1007\/978-3-030-11135-9_10"},{"key":"112_CR11","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1146\/annurev-biodatasci-072018-021237","volume":"2","author":"R Poldrack","year":"2019","unstructured":"Poldrack R et al (2019) Computational and informatic advances for reproducible data analysis in neuroimaging. Annu Rev Biomed Data Sci 2:119\u2013138","journal-title":"Annu Rev Biomed Data Sci"},{"issue":"6","key":"112_CR12","doi-asserted-by":"publisher","first-page":"2063","DOI":"10.1109\/TNNLS.2018.2790388","volume":"29","author":"M Mahmud","year":"2018","unstructured":"Mahmud M, Kaiser MS, Hussain A, Vassanelli S (2018) Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst 29(6):2063\u20132079. https:\/\/doi.org\/10.1109\/TNNLS.2018.2790388","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"112_CR13","unstructured":"Mahmud M, Kaiser MS, Hussain A (2020) Deep learning in mining biological data. CoRR arXiv:abs\/2003.00108, 1\u201336. https:\/\/arxiv.org\/abs\/2003.00108"},{"key":"112_CR14","doi-asserted-by":"publisher","unstructured":"Ali HM, Kaiser MS, Mahmud M (2019) Application of convolutional neural network in segmenting brain regions from mri data. In: International Conference on Brain Informatics, pp. 136\u2013146. https:\/\/doi.org\/10.1007\/978-3-030-37078-7_14. Springer","DOI":"10.1007\/978-3-030-37078-7_14"},{"key":"112_CR15","doi-asserted-by":"publisher","unstructured":"Orojo O, Tepper J, McGinnity TM, Mahmud M (2019) A Multi-recurrent Network for Crude Oil Price Prediction. In: Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2953\u20132958. https:\/\/doi.org\/10.1109\/SSCI44817.2019.9002841","DOI":"10.1109\/SSCI44817.2019.9002841"},{"key":"112_CR16","doi-asserted-by":"publisher","first-page":"105613","DOI":"10.1016\/j.asoc.2019.105613","volume":"83","author":"SW Yahaya","year":"2019","unstructured":"Yahaya SW, Lotfi A, Mahmud M (2019) A consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Appl Soft Comput 83:105613. https:\/\/doi.org\/10.1016\/j.asoc.2019.105613","journal-title":"Appl Soft Comput"},{"key":"112_CR17","doi-asserted-by":"crossref","unstructured":"Fabietti M, Mahmud M, Lotfi A, Averna A, Guggenmo D, Nudo R, Chiappalone M (2020) Neural network-based artifact detection in local field potentials recorded from chronically implanted neural probes. In: Proc. IJCNN, pp. 1\u20138","DOI":"10.1109\/IJCNN48605.2020.9207320"},{"key":"112_CR18","doi-asserted-by":"publisher","unstructured":"Noor MBT, Zenia NZ, Kaiser MS, Mahmud M, Al\u00a0Mamun S (2019) Detecting neurodegenerative disease from mri: A brief review on a deep learning perspective. In: International Conference on Brain Informatics, pp. 115\u2013125. https:\/\/doi.org\/10.1007\/978-3-030-37078-7_12","DOI":"10.1007\/978-3-030-37078-7_12"},{"key":"112_CR19","doi-asserted-by":"crossref","unstructured":"Miah Y, Prima CNE, Seema SJ, Mahmud M, Kaiser MS (2020) Performance comparison of machine learning techniques in identifying dementia from open access clinical datasets. In: Proc. ICACIn, pp. 69\u201378","DOI":"10.1007\/978-981-15-6048-4_8"},{"key":"112_CR20","doi-asserted-by":"publisher","DOI":"10.1007\/s12559-019-09706-3","author":"G Rabby","year":"2020","unstructured":"Rabby G, Azad S, Mahmud M, Zamli KZ, Rahman MM (2020) Teket: a tree-based unsupervised keyphrase extraction technique. Cogn Comput. https:\/\/doi.org\/10.1007\/s12559-019-09706-3","journal-title":"Cogn Comput"},{"key":"112_CR21","doi-asserted-by":"crossref","unstructured":"Watkins J, Fabietti M, Mahmud M (2020) Sense: a student performance quantifier using sentiment analysis. In: Proc. IJCNN, pp. 1\u20136","DOI":"10.1109\/IJCNN48605.2020.9207721"},{"key":"112_CR22","doi-asserted-by":"crossref","unstructured":"Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den\u00a0Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al (2016) Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484","DOI":"10.1038\/nature16961"},{"issue":"1","key":"112_CR23","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1186\/s40708-020-00104-2","volume":"7","author":"J Islam","year":"2020","unstructured":"Islam J, Zhang Y (2020) GAN-based synthetic brain PET image generation. Brain Informatics 7(1):3. https:\/\/doi.org\/10.1186\/s40708-020-00104-2","journal-title":"Brain Informatics"},{"key":"112_CR24","doi-asserted-by":"crossref","unstructured":"Lei B et al (2020) Adaptive sparse learning using multi-template for neurodegenerative disease diagnosis. Medical Image Analysis 101632:","DOI":"10.1016\/j.media.2019.101632"},{"issue":"3","key":"112_CR25","doi-asserted-by":"publisher","first-page":"1027","DOI":"10.1093\/brain\/awaa025","volume":"143","author":"GB Chand","year":"2020","unstructured":"Chand GB, Dwyer DB, Erus G, Sotiras A, Varol E, Srinivasan D, Doshi J, Pomponio R, Pigoni A, Dazzan P et al (2020) Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning. Brain 143(3):1027\u20131038","journal-title":"Brain"},{"issue":"3","key":"112_CR26","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1007\/s40708-015-0019-x","volume":"2","author":"S Liu","year":"2015","unstructured":"Liu S, Cai W, Liu S, Zhang F, Fulham M, Feng D, Pujol S, Kikinis R (2015) Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform 2(3):167","journal-title":"Brain Inform"},{"issue":"10","key":"112_CR27","doi-asserted-by":"publisher","first-page":"3092","DOI":"10.1109\/TITS.2017.2771746","volume":"19","author":"MS Kaiser","year":"2018","unstructured":"Kaiser MS, Lwin KT, Mahmud M, Hajializadeh D, Chaipimonplin T, Sarhan A, Hossain MA (2018) Advances in crowd analysis for urban applications through urban event detection. IEEE Transactions Intelligent Transportation Syst 19(10):3092\u20133112","journal-title":"IEEE Transactions Intelligent Transportation Syst"},{"key":"112_CR28","unstructured":"Brown CJ, Hamarneh G (2016) Machine learning on human connectome data from MRI. CoRR arXiv:abs\/1611.08699"},{"key":"112_CR29","doi-asserted-by":"publisher","first-page":"334","DOI":"10.1016\/j.procs.2018.10.306","volume":"140","author":"RD Gottapu","year":"2018","unstructured":"Gottapu RD, Dagli CH (2018) Analysis of parkinson\u2019s disease data. Proc. Comput. Sci. 140:334\u2013341","journal-title":"Proc. Comput. Sci."},{"key":"112_CR30","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","volume":"42","author":"G Litjens","year":"2017","unstructured":"Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60\u201388","journal-title":"Med Image Anal"},{"key":"112_CR31","doi-asserted-by":"crossref","unstructured":"Sarraf S, Tofighi G, et al (2016) Deepad: Alzheimer\u2019s disease classification via deep convolutional neural networks using mri and fmri. bioRxiv","DOI":"10.1101\/070441"},{"key":"112_CR32","doi-asserted-by":"crossref","unstructured":"Pinaya et al (2016) Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci. Rep. 6:","DOI":"10.1038\/srep38897"},{"key":"112_CR33","unstructured":"Payan A, Montana G (2015) Predicting alzheimer\u2019s disease: a neuroimaging study with 3d convolutional neural networks. CoRR arXiv:abs\/1502.02506"},{"key":"112_CR34","unstructured":"Dakka J, et al (2017) Learning neural markers of schizophrenia disorder using recurrent neural networks. CoRR arXiv:abs\/1712.00512"},{"key":"112_CR35","doi-asserted-by":"crossref","unstructured":"Qi J, Tejedor J (2016) Deep multi-view representation learning for multi-modal features of the schizophrenia and schizo-affective disorder. In: Proc. IEEE ICASSP, pp. 952\u2013956","DOI":"10.1109\/ICASSP.2016.7471816"},{"key":"112_CR36","doi-asserted-by":"crossref","unstructured":"B\u201dackstr\u00f6m K, et al (2018) An efficient 3d deep convolutional network for alzheimer\u2019s disease diagnosis using mr images. In: Proc. ISBI 2018, pp. 149\u2013153","DOI":"10.1109\/ISBI.2018.8363543"},{"key":"112_CR37","doi-asserted-by":"publisher","first-page":"101645","DOI":"10.1016\/j.nicl.2018.101645","volume":"21","author":"S Basaia","year":"2019","unstructured":"Basaia S et al (2019) Automated classification of alzheimer\u2019s disease and mild cognitive impairment using a single mri and dnn. Neuroimage Clin 21:101645","journal-title":"Neuroimage Clin"},{"issue":"8","key":"112_CR38","doi-asserted-by":"publisher","first-page":"1059","DOI":"10.1016\/j.jalz.2019.02.007","volume":"15","author":"H Li","year":"2019","unstructured":"Li H, Habes M, Wolk DA, Fan Y (2019) A deep learning model for early prediction of alzheimer\u2019s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer\u2019s Dementia 15(8):1059\u20131070","journal-title":"Alzheimer\u2019s Dementia"},{"key":"112_CR39","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1016\/j.neuroimage.2019.01.031","volume":"189","author":"S Spasov","year":"2019","unstructured":"Spasov S et al (2019) A parameter-efficient dl approach to predict conversion from mild cognitive impairment to alzheimer\u2019s disease. NeuroImage 189:276\u2013287","journal-title":"NeuroImage"},{"key":"112_CR40","first-page":"2259","volume":"2017","author":"CV Dolph","year":"2017","unstructured":"Dolph CV, Alam M, Shboul Z, Samad MD, Iftekharuddin KM (2017) Deep learning of texture and structural features for multiclass alzheimer\u2019s disease classification. Proc. IJCNN 2017:2259\u20132266","journal-title":"Proc. IJCNN"},{"key":"112_CR41","doi-asserted-by":"publisher","first-page":"1892","DOI":"10.4236\/jamp.2017.59159","volume":"5","author":"S Luo","year":"2017","unstructured":"Luo S, Li X, Li J (2017) Automatic alzheimer\u2019s disease recognition from mri data using deep learning method. J Applied Math Phy 5:1892\u20131898","journal-title":"J Applied Math Phy"},{"key":"112_CR42","doi-asserted-by":"publisher","first-page":"194","DOI":"10.3389\/fnagi.2019.00194","volume":"11","author":"MA Bohle","year":"2019","unstructured":"Bohle MA et al (2019) Layer-wise relevance propagation for explaining dnn decisions in mri-based alzheimer\u2019s disease classification. Front Aging Neurosci 11:194","journal-title":"Front Aging Neurosci"},{"key":"112_CR43","first-page":"1","volume":"2017","author":"A Farooq","year":"2017","unstructured":"Farooq A, Anwar S, Awais M, Rehman S (2017) A deep cnn based multi-class classification of alzheimer\u2019s disease using mri. Proc IEEE IST 2017:1\u20136","journal-title":"Proc IEEE IST"},{"key":"112_CR44","doi-asserted-by":"crossref","unstructured":"Latha M, Kavitha G (2018) Detection of schizophrenia in brain mr images based on segmented ventricle region and dbns. Neural Computing and Applications","DOI":"10.1007\/s00521-018-3360-1"},{"key":"112_CR45","doi-asserted-by":"publisher","unstructured":"Pereira HR, Fonseca JM, Ferreira HA (2020) Combination of Medical Imaging and Demographic Data for Parkinson\u2019s Disease Diagnosis. In: Camarinha-Matos, L.M., Farhadi, N., Lopes, F., Pereira, H. (eds.) Technological Innovation for Life Improvement. IFIP Advances in Information and Communication Technology, pp. 339\u2013346. Springer, Cham. https:\/\/doi.org\/10.1007\/978-3-030-45124-0_32","DOI":"10.1007\/978-3-030-45124-0_32"},{"key":"112_CR46","doi-asserted-by":"publisher","DOI":"10.3906\/elk-1904-172","author":"A Yigit","year":"2020","unstructured":"Yigit A, Sik Z (2020) Applying deep learning models to structural MRI for stage prediction of Alzheimer\u2019s disease. Turk J Elec Eng Comp Sci. https:\/\/doi.org\/10.3906\/elk-1904-172","journal-title":"Turk J Elec Eng Comp Sci"},{"issue":"2","key":"112_CR47","first-page":"1","volume":"44","author":"F Ramzan","year":"2019","unstructured":"Ramzan F, Khan MUG, Rehmat A, Iqbal S, Saba T, Rehman A, Mehmood Z (2019) A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer\u2019s Disease Stages Using Resting-State fMRI and Residual Neural Networks. J Med Syst 44(2):1\u201316","journal-title":"J Med Syst"},{"key":"112_CR48","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1016\/j.artmed.2019.06.003","volume":"98","author":"MNI Qureshi","year":"2019","unstructured":"Qureshi MNI, Oh J, Lee B (2019) 3d-cnn based discrimination of schizophrenia using resting-state fmri. Artif Intell Med 98:10\u201317","journal-title":"Artif Intell Med"},{"key":"112_CR49","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1016\/j.ebiom.2018.03.017","volume":"30","author":"L-L Zeng","year":"2018","unstructured":"Zeng L-L et al (2018) Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity mri. EBioMedicine 30:74\u201385","journal-title":"EBioMedicine"},{"key":"112_CR50","doi-asserted-by":"crossref","unstructured":"Patel P, Aggarwal P, Gupta A (2016) Classification of schizophrenia versus normal subjects using deep learning. In: Proc. ICVGIP, India, pp. 281\u2013286","DOI":"10.1145\/3009977.3010050"},{"issue":"1","key":"112_CR51","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1186\/s40535-017-0044-3","volume":"4","author":"S Han","year":"2017","unstructured":"Han S et al (2017) Recognition of early-onset schizophrenia using deep-learning method. Appl Inform 4(1):16","journal-title":"Appl Inform"},{"key":"112_CR52","doi-asserted-by":"crossref","unstructured":"Kim J et al (2015) Deep nn with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage 124:","DOI":"10.1016\/j.neuroimage.2015.05.018"},{"key":"112_CR53","unstructured":"Sarraf S, Tofighi G (2016) Classification of alzheimer\u2019s disease using fmri data and deep learning cnns. CoRR arXiv:abs\/1603.08631"},{"key":"112_CR54","doi-asserted-by":"crossref","unstructured":"Qiu et al (2019) Classification of schizophrenia patients and healthy controls using ica of complex-valued fmri data and convolutional neural networks. In: Tang, H., Wang, Z., Lu, H. (eds.) Proc. ISNN 2019, pp. 540\u2013547","DOI":"10.1007\/978-3-030-22808-8_53"},{"key":"112_CR55","doi-asserted-by":"crossref","unstructured":"Yan et al (2017) Discriminating schizophrenia from normal controls using resting state functional network connectivity: A deep neural network and layer-wise relevance propagation method. In: Proc MLSP, pp. 1\u20136","DOI":"10.1109\/MLSP.2017.8168179"},{"key":"112_CR56","doi-asserted-by":"crossref","unstructured":"Korolev S, Safiullin A, Belyaev M, Dodonova Y (2017) Residual and plain convolutional neural networks for 3d brain MRI classification. CoRR abs\/1701.06643. arXiv:1701.06643","DOI":"10.1109\/ISBI.2017.7950647"},{"key":"112_CR57","unstructured":"Esmaeilzadeh S, Yang Y, Adeli E (2018) End-to-end parkinson disease diagnosis using brain mr-images by 3d-cnn. CoRR arXiv:abs\/1806.05233"},{"key":"112_CR58","doi-asserted-by":"crossref","unstructured":"Sivaranjini S, Sujatha CM (2019) Deep learning based diagnosis of parkinson\u2019s disease using convolutional neural network. Multimedia Tools and Applications","DOI":"10.1007\/s11042-019-7469-8"},{"key":"112_CR59","doi-asserted-by":"crossref","unstructured":"Ulloa A et al (2015) Synthetic structural magnetic resonance image generator improves deep learning prediction of schizophrenia. In: Proc. IEEE MLSP, pp. 1\u20136","DOI":"10.1109\/MLSP.2015.7324379"},{"key":"112_CR60","doi-asserted-by":"crossref","unstructured":"Faturrahman, M., Wasito, I., Hanifah, N., Mufidah, R (2017) Structural mri classification for alzheimer\u2019s disease detection using deep belief network. In: 2017 ICTS, pp. 37\u201342","DOI":"10.1109\/ICTS.2017.8265643"},{"key":"112_CR61","doi-asserted-by":"publisher","first-page":"909","DOI":"10.3389\/fnins.2019.00909","volume":"13","author":"X Zhang","year":"2019","unstructured":"Zhang X, Feng Y, Chen W, Li X, Faria AV, Feng Q, Mori S (2019) Linear registration of brain mri using knowledge-based multiple intermediator libraries. Front Neurosci 13:909. https:\/\/doi.org\/10.3389\/fnins.2019.00909","journal-title":"Front Neurosci"},{"key":"112_CR62","doi-asserted-by":"publisher","first-page":"588","DOI":"10.1016\/j.neuroimage.2011.06.078","volume":"58","author":"R Sladky","year":"2011","unstructured":"Sladky R, Friston K, Tr\u00f6stl J, Cunnington R, Moser E, Windischberger C (2011) Slice-timing effects and their correction in functional mri. NeuroImage 58:588\u201394","journal-title":"NeuroImage"},{"key":"112_CR63","doi-asserted-by":"publisher","first-page":"320","DOI":"10.1016\/j.neuroimage.2013.08.048","volume":"84","author":"JD Power","year":"2014","unstructured":"Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifact in resting state fmri. NeuroImage 84:320\u2013341","journal-title":"NeuroImage"},{"key":"112_CR64","doi-asserted-by":"crossref","unstructured":"Patro SGK, Sahu KK (2015) Normalization: A preprocessing stage. CoRR arXiv:abs\/1503.06462","DOI":"10.17148\/IARJSET.2015.2305"},{"key":"112_CR65","doi-asserted-by":"publisher","unstructured":"van Driel J, Olivers C, Fahrenfort J (2019) High-pass filtering artifacts in multivariate classification of neural time series data. bioRxiv. https:\/\/doi.org\/10.1101\/530220","DOI":"10.1101\/530220"},{"issue":"4","key":"112_CR66","doi-asserted-by":"publisher","first-page":"806","DOI":"10.1109\/TASSP.1985.1164649","volume":"33","author":"TJ Shan","year":"1985","unstructured":"Wax Tie-Jun Shan, M, Kailath T, (1985) On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans Acoust Speech Signal Process 33(4):806\u2013811","journal-title":"IEEE Trans Acoust Speech Signal Process"},{"key":"112_CR67","doi-asserted-by":"crossref","unstructured":"Shen S, Sandham WA, Granat MH (2003) Preprocessing and segmentation of brain magnetic resonance images. In: Proc. ITAB, pp. 149\u2013152","DOI":"10.1109\/ITAB.2003.1222495"},{"issue":"3","key":"112_CR68","doi-asserted-by":"publisher","first-page":"1521","DOI":"10.1006\/nimg.2002.1200","volume":"17","author":"CG Thomas","year":"2002","unstructured":"Thomas CG, Harshman RA, Menon RS (2002) Noise reduction in bold-based fmri using component analysis. NeuroImage 17(3):1521\u20131537. https:\/\/doi.org\/10.1006\/nimg.2002.1200","journal-title":"NeuroImage"},{"key":"112_CR69","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.jneumeth.2017.12.011","volume":"302","author":"N Amoroso","year":"2018","unstructured":"Amoroso N et al (2018) Deep learning reveals alzheimer\u2019s disease onset in mci subjects: Results from an international challenge. J Neurosci Methods 302:3\u20139","journal-title":"J Neurosci Methods"},{"key":"112_CR70","doi-asserted-by":"crossref","unstructured":"Shakeri M, et al (2016) Deep spectral-based shape features for alzheimer\u2019s disease classification. In: Spectral and Shape Analysis in Medical Imaging, pp. 15\u201324","DOI":"10.1007\/978-3-319-51237-2_2"},{"key":"112_CR71","doi-asserted-by":"crossref","unstructured":"Li H, Fan Y (2019) Early prediction of alzheimer\u2019s disease dementia based on baseline hippocampal MRI and 1-year follow-up cognitive measures using deep recurrent neural networks. CoRR arXiv:abs\/1901.01451","DOI":"10.1109\/ISBI.2019.8759397"},{"key":"112_CR72","doi-asserted-by":"crossref","unstructured":"Hon M, Khan NM (2017) Towards alzheimer\u2019s disease classification through transfer learning. CoRR arXiv:abs\/1711.11117","DOI":"10.1109\/BIBM.2017.8217822"},{"key":"112_CR73","doi-asserted-by":"crossref","unstructured":"Ullah HMT, et al (2018) Alzheimer\u2019s disease and dementia detection from 3d brain mri data using deep cnns. In: Proc. I2CT 2018, pp. 1\u20133","DOI":"10.1109\/I2CT.2018.8529808"},{"key":"112_CR74","doi-asserted-by":"crossref","unstructured":"Islam J, Zhang Y (2017) A novel deep learning based multi-class classification method for alzheimer\u2019s disease detection using brain mri data. In: Zeng, Y., et al. (eds.) Brain Inform., pp. 213\u2013222","DOI":"10.1007\/978-3-319-70772-3_20"},{"issue":"2","key":"112_CR75","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1007\/s40747-017-0064-6","volume":"4","author":"D Kollias","year":"2018","unstructured":"Kollias D et al (2018) Deep neural architectures for prediction in healthcare. Complex Intell Syst 4(2):119\u2013131","journal-title":"Complex Intell Syst"},{"key":"112_CR76","doi-asserted-by":"crossref","unstructured":"Shinde S et al (2019) Predictive markers for parkinson\u2019s disease using deep neural nets on neuromelanin sensitive mri. NeuroImage: Clinical 22, 101748","DOI":"10.1016\/j.nicl.2019.101748"},{"key":"112_CR77","doi-asserted-by":"crossref","unstructured":"Kollia I, Stafylopatis A, Kollias SD (2019) Predicting parkinson\u2019s disease using latent information extracted from deep neural networks. CoRR arXiv:abs\/1901.07822","DOI":"10.1109\/IJCNN.2019.8851995"},{"key":"112_CR78","unstructured":"Srinivasagopalan S et al (2019) A deep learning approach for diagnosing schizophrenic patients. J. Exp. Theor. Artif. Intell. 1\u201314:"},{"issue":"10","key":"112_CR79","doi-asserted-by":"publisher","first-page":"2768","DOI":"10.1109\/TBME.2019.2895663","volume":"66","author":"T Matsubara","year":"2019","unstructured":"Matsubara T et al (2019) Deep neural generative model of functional mri images for psychiatric disorder diagnosis. IEEE Trans Biomed Engg 66(10):2768\u201379","journal-title":"IEEE Trans Biomed Engg"},{"key":"112_CR80","unstructured":"Ulloa A, Plis SM, Calhoun VD (2018) Improving classification rate of schizophrenia using a multimodal multi-layer perceptron model with structural and functional MR. CoRR arXiv:abs\/1804.04591"},{"key":"112_CR81","unstructured":"Weiner MW (2004) Alzheimer\u2019s Disease Neuroimaging Initiative. http:\/\/adni.loni.usc.edu\/ Accessed 2019-12-26"},{"key":"112_CR82","unstructured":"OASIS: OASIS Brains Dataset (2007). https:\/\/www.oasis-brains.org\/ Accessed 2019-12-26"},{"key":"112_CR83","unstructured":"AIBL: AIBL. Last Accessed on 2020-06-12. https:\/\/aibl.csiro.au\/"},{"key":"112_CR84","unstructured":"UCL: Minimal Interval Resonance Imaging in Alzheimer\u2019s Disease (MIRIAD). Last Accessed on 2020-06-12. http:\/\/miriad.drc.ion.ucl.ac.uk\/"},{"key":"112_CR85","unstructured":"Network TMR (2012) COBRE MR data. https:\/\/bit.ly\/2Qdrjsd Accessed 2019-12-26"},{"key":"112_CR86","unstructured":"f-MRI Forum, O.: Open f-MRI datasets. https:\/\/openfmri.org\/ Accessed 2019-12-26"},{"key":"112_CR87","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2015.09.003","author":"DB Keator","year":"2015","unstructured":"Keator DB et al (2015) The function biomedical informatics research network data repository. NeuroImage. https:\/\/doi.org\/10.1016\/j.neuroimage.2015.09.003","journal-title":"NeuroImage"},{"key":"112_CR88","unstructured":"Ames D, et al (2011) AIBL (Australian Imaging Biomarkers and Lifestyle Study of Ageing) Study Data. http:\/\/adni.loni.usc.edu\/category\/aibl-study-data\/ Accessed 2019-12-26"},{"key":"112_CR89","doi-asserted-by":"crossref","unstructured":"Katsiaris PT, Artemiadis PK, Kyriakopoulos KJ (2012) Relating postural synergies to low-d muscular activations: Towards bio-inspired control of robotic hands. In: 2012 IEEE BIBE, pp. 245\u2013250","DOI":"10.1109\/BIBE.2012.6399682"},{"key":"112_CR90","unstructured":"PPMI: Parkinson\u2019s Progression Markers Initiative $$|$$ Download Data. Last Accessed on 2020-06-12. https:\/\/www.ppmi-info.org\/access-data-specimens\/download-data\/"},{"key":"112_CR91","unstructured":"National Institutes of Health: The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system datasets. https:\/\/fitbir.nih.gov\/ Accessed 2019-12-26"},{"key":"112_CR92","unstructured":"NYU Langone Health: NYU Langone Health fastMRI Dataset. https:\/\/fastmri.med.nyu.edu\/ Accessed 2019-12-26"},{"key":"112_CR93","unstructured":"Kaggle: Detecting early Alzheimer\u2019s MR data (2017). https:\/\/www.kaggle.com\/hyunseokc\/detecting-early-alzheimer-s Accessed 2019-12-26"},{"key":"112_CR94","unstructured":"MIDAS: NAMIC\u2013Brain Mutlimodality. https:\/\/bit.ly\/39qT5ZG Accessed 2019-12-26"},{"key":"112_CR95","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.neuroimage.2012.12.044","volume":"70","author":"IB Malone","year":"2013","unstructured":"Malone IB, Cash D, Ridgway GR, MacManus DG, Ourselin S, Fox NC, Schott JM (2013) MIRIAD-Public release of a multiple time point Alzheimer\u2019s MR imaging dataset. NeuroImage 70:33\u201336","journal-title":"NeuroImage"},{"key":"112_CR96","unstructured":"The Michael J. Fox Foundation for Parkinson\u2019s Research (MJFF) : PPMI dataset (2002). https:\/\/www.ppmi-info.org\/access-data-specimens\/download-data\/ Accessed 2019-12-26"},{"key":"112_CR97","first-page":"869","volume-title":"Encyclopedia of Machine Learning","author":"PA Flach","year":"2010","unstructured":"Flach PA (2010) Roc analysis. In: Sammut C, Webb GI (eds) Encyclopedia of Machine Learning. Springer, Boston, MA, pp 869\u2013875"},{"key":"112_CR98","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1186\/1472-6947-13-30","volume":"13","author":"Z Afzal","year":"2013","unstructured":"Afzal Z, Schuemie M, Blijderveen J, Sen E, Sturkenboom M, Kors J (2013) Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records. BMC Med Inform Decision Making 13:30. https:\/\/doi.org\/10.1186\/1472-6947-13-30","journal-title":"BMC Med Inform Decision Making"},{"key":"112_CR99","first-page":"901","volume-title":"Encyclopedia of Machine Learning","author":"KM Ting","year":"2010","unstructured":"Ting KM (2010) Sensitivity and specificity. In: Sammut C, Webb GI (eds) Encyclopedia of Machine Learning. Springer, Boston, MA, pp 901\u2013902"},{"issue":"4","key":"112_CR100","doi-asserted-by":"publisher","first-page":"361","DOI":"10.1002\/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4","volume":"15","author":"FE Harrell Jr","year":"1996","unstructured":"Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics Med 15(4):361\u2013387","journal-title":"Statistics Med"},{"issue":"5","key":"112_CR101","doi-asserted-by":"publisher","first-page":"206","DOI":"10.1038\/s42256-019-0048-x","volume":"1","author":"C Rudin","year":"2019","unstructured":"Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1(5):206\u2013215","journal-title":"Nat Mach Intell"}],"container-title":["Brain Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s40708-020-00112-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1186\/s40708-020-00112-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s40708-020-00112-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,10]],"date-time":"2021-10-10T16:44:44Z","timestamp":1633884284000},"score":1,"resource":{"primary":{"URL":"https:\/\/braininformatics.springeropen.com\/articles\/10.1186\/s40708-020-00112-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,9]]},"references-count":101,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2020,12]]}},"alternative-id":["112"],"URL":"https:\/\/doi.org\/10.1186\/s40708-020-00112-2","relation":{},"ISSN":["2198-4018","2198-4026"],"issn-type":[{"type":"print","value":"2198-4018"},{"type":"electronic","value":"2198-4026"}],"subject":[],"published":{"date-parts":[[2020,10,9]]},"assertion":[{"value":"24 March 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 September 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"9 October 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"This article uses secondary data and therefore\u00a0does not contain any studies with human participants or animals.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval and consent to participate"}},{"value":"As this article does not contain any studies with human participants or animals, the informed consent is not applicable.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}},{"value":"The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"11"}}