{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,2]],"date-time":"2024-03-02T21:48:41Z","timestamp":1709416121033},"reference-count":54,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Wireless Com Network"],"published-print":{"date-parts":[[2020,12]]},"abstract":"Abstract<\/jats:title>\n Recently, many super-resolution algorithms have been proposed to recover high-resolution images to improve visualization and help better analyze images. Among them, total variation regularization (TV) methods have been proven to have a good effect in retaining image edge information. However, these TV methods do not consider the temporal correlation between images. Our algorithm designs a new TV regularization (TV2++) to take advantage of the time dimension information of the images, further improving the utilization of useful information in the images. In addition, the union of global low rank regularization and TV regularization further enhances the image super-resolution recovery. And we extend the exponential-type penalty (ETP) function on singular values of a matrix to enhance low-rank matrix recovery. A novel image super-resolution algorithm based on the ETP norm and TV2++ regularization is proposed. And the alternating direction method of multipliers (ADMM) is applied to solve the optimization problems effectively. Numerous experimental results prove that the proposed algorithm is superior to other algorithms.<\/jats:p>","DOI":"10.1186\/s13638-020-01815-0","type":"journal-article","created":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T11:02:48Z","timestamp":1604228568000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["TV2++: a novel spatial-temporal total variation for super resolution with exponential-type norm"],"prefix":"10.1186","volume":"2020","author":[{"given":"Lizhen","family":"Deng","sequence":"first","affiliation":[]},{"given":"Zhetao","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Guoxia","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Hu","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Bing-Kun","family":"Bao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,11,1]]},"reference":[{"issue":"3","key":"1815_CR1","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1007\/s11265-013-0804-9","volume":"75","author":"J. Jiang","year":"2014","unstructured":"J. Jiang, R. Hu, Z. Han, Z. Wang, Low-resolution and low-quality face super-resolution in monitoring scene via support-driven sparse coding. J Signal Proc. Syst.75(3), 245\u2013256 (2014). doi:10.1007\/s11265-013-0804-9.","journal-title":"J Signal Proc. Syst."},{"issue":"1","key":"1815_CR2","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1109\/TMI.2019.2922960","volume":"39","author":"C. You","year":"2019","unstructured":"C. You, Y. Zhang, X. Zhang, G. Li, S. Ju, Z. Zhao, Z. Zhang, W. Cong, P. K. Saha, G. Wang, CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE Trans. Med. Imaging. 39(1), 188\u2013203 (2019). doi:10.1109\/TMI.2019.2922960.","journal-title":"IEEE Trans. Med. Imaging"},{"key":"1815_CR3","doi-asserted-by":"crossref","unstructured":"M. Sugie, S. Gohshi, H. Takeshita, C. Mori, in 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). Subjective assessment of super-resolution 4k video using paired comparison, (2014), pp. 042\u2013047. doi:10.1109\/ISPACS.2014.7024422.","DOI":"10.1109\/ISPACS.2014.7024422"},{"issue":"9","key":"1815_CR4","doi-asserted-by":"publisher","first-page":"4864","DOI":"10.1109\/TGRS.2012.2230270","volume":"51","author":"Z. Pan","year":"2013","unstructured":"Z. Pan, J. Yu, H. Huang, S. Hu, A. Zhang, H. Ma, W. Sun, Super-resolution based on compressive sensing and structural self-similarity for remote sensing images. IEEE Trans. Geosci. Remote Sens.51(9), 4864\u20134876 (2013). doi:10.1109\/TGRS.2012.2230270.","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"1815_CR5","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.neucom.2018.05.108","volume":"315","author":"G. Xu","year":"2018","unstructured":"G. Xu, S. Khan, H. Zhu, L. Han, M. K. Ng, H. Yan, Discriminative tracking via supervised tensor learning. Neurocomputing. 315:, 33\u201347 (2018). doi:10.1016\/j.neucom.2018.05.108.","journal-title":"Neurocomputing"},{"issue":"4","key":"1815_CR6","doi-asserted-by":"publisher","first-page":"745","DOI":"10.1109\/TSC.2019.2963301","volume":"13","author":"J. Zhou","year":"2020","unstructured":"J. Zhou, J. Sun, P. Cong, Z. Liu, S. Hu, Security-critical energy-aware task scheduling for heterogeneous real-time MPSoCs in IoT. IEEE Trans. Serv. Comput.13(4), 745\u2013758 (2020). doi:10.1109\/TSC.2019.2963301.","journal-title":"IEEE Trans. Serv. Comput."},{"issue":"9","key":"1815_CR7","doi-asserted-by":"publisher","first-page":"6172","DOI":"10.1109\/TII.2019.2959258","volume":"16","author":"X. Xu","year":"2020","unstructured":"X. Xu, R. Mo, F. Dai, W. Lin, S. Wan, W. Dou, Dynamic resource provisioning with fault tolerance for data-intensive meteorological workflows in cloud. IEEE Trans. Ind. Inform.16(9), 6172\u20136181 (2020). doi:10.1109\/TII.2019.2959258.","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"2","key":"1815_CR8","doi-asserted-by":"publisher","first-page":"1275","DOI":"10.1007\/s11280-019-00684-y","volume":"23","author":"L. Qi","year":"2020","unstructured":"L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Xu, A QoS-aware virtual machine scheduling method for energy conservation in cloud-based cyber-physical systems. World Wide Web. 23(2), 1275\u20131297 (2020). doi:10.1007\/s11280-019-00684-y.","journal-title":"World Wide Web"},{"key":"1815_CR9","first-page":"1","volume":"2017","author":"Y. Xu","year":"2017","unstructured":"Y. Xu, L. Qi, W. Dou, J. Yu, Privacy-preserving and scalable service recommendation based on simhash in a distributed cloud environment. Complexity. 2017:, 1\u20139 (2017). doi:10.1155\/2017\/3437854.","journal-title":"Complexity"},{"issue":"12","key":"1815_CR10","doi-asserted-by":"publisher","first-page":"2459","DOI":"10.1109\/TMI.2015.2437894","volume":"34","author":"F. Shi","year":"2015","unstructured":"F. Shi, J. Cheng, L. Wang, P. T. Yap, D. Shen, LRTV: MR image super-resolution with low-rank and total variation regularizations. IEEE Trans. Med. Imaging. 34(12), 2459\u20132466 (2015). doi:10.1109\/TMI.2015.2437894.","journal-title":"IEEE Trans. Med. Imaging"},{"key":"1815_CR11","doi-asserted-by":"crossref","unstructured":"P. Rasti, H. Demirel, G. Anbarjafari, in 2014 22nd Signal Processing and Communications Applications Conference (SIU). Improved iterative back projection for video super-resolution, (2014), pp. 552\u2013555. doi:10.1109\/SIU.2014.6830288.","DOI":"10.1109\/SIU.2014.6830288"},{"issue":"6","key":"1815_CR12","doi-asserted-by":"publisher","first-page":"784","DOI":"10.1016\/j.media.2010.05.010","volume":"14","author":"J. Manjon","year":"2010","unstructured":"J. Manjon, P. Coup\u00e9, A. Buades, V. Fonov, L. Collins, M. Robles, Non-local MRI upsampling. Med. Image Anal.14(6), 784\u2013792 (2010). doi:10.1016\/j.media.2010.05.010.","journal-title":"Med. Image Anal."},{"key":"1815_CR13","doi-asserted-by":"crossref","unstructured":"Y. He, K. -H. Yap, L. Chen, L. -P. Chau, Blind super-resolution image reconstruction using a maximum a posteriori estimation, (2006). doi:10.1109\/ICIP.2006.312715.","DOI":"10.1109\/ICIP.2006.312715"},{"key":"1815_CR14","doi-asserted-by":"crossref","unstructured":"Z. Lu, C. Wu, D. Chen, Y. Qi, C. Wei, in The 26th Chinese Control and Decision Conference (2014 CCDC). Overview on image super resolution reconstruction, (2014), pp. 2009\u20132014. doi:10.1109\/CCDC.2014.6852498.","DOI":"10.1109\/CCDC.2014.6852498"},{"issue":"11","key":"1815_CR15","doi-asserted-by":"publisher","first-page":"2861","DOI":"10.1109\/TIP.2010.2050625","volume":"19","author":"L. Y. Zhou","year":"2010","unstructured":"L. Y. Zhou, S. U. Cai-Xia, Y. F. Cao, Image super-resolution via sparse representation. IEEE Trans. Image Process.19(11), 2861\u20132873 (2010). doi:10.1109\/TIP.2010.2050625.","journal-title":"IEEE Trans. Image Process."},{"key":"1815_CR16","doi-asserted-by":"crossref","unstructured":"R. Timofte, V. DeSmet, L. VanGool, in Asian Conference on Computer Vision. A+: adjusted anchored neighborhood regression for fast super-resolution, (2014), pp. 111\u2013126. doi:10.1007\/978-3-319-16817-3\\_8.","DOI":"10.1007\/978-3-319-16817-3"},{"key":"1815_CR17","doi-asserted-by":"crossref","unstructured":"J. B. Huang, A. Singh, N. Ahuja, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Single image super-resolution from transformed selfexemplars, (2015), pp. 5197\u20135206. doi:10.1109\/CVPR.2015.7299156.","DOI":"10.1109\/CVPR.2015.7299156"},{"issue":"9","key":"1815_CR18","doi-asserted-by":"publisher","first-page":"3054","DOI":"10.1109\/TCSVT.2019.2935838","volume":"30","author":"S. Khan","year":"2020","unstructured":"S. Khan, M. Nawaz, G. Xu, H. Yan, Image correspondence with CUR decomposition based graph completion and matching. IEEE Trans. Circ. Syst. Video Technol.30(9), 3054\u20133067 (2020). doi:10.1109\/TCSVT.2019.2935838.","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"issue":"12","key":"1815_CR19","doi-asserted-by":"publisher","first-page":"1785","DOI":"10.1109\/TC.2019.2935042","volume":"68","author":"J. Zhou","year":"2019","unstructured":"J. Zhou, X. S. Hu, Y. Ma, J. Sun, S. Hu, Improving availability of multicore real-time systems suffering both permanent and transient faults. IEEE Trans. Comput.68(12), 1785\u20131801 (2019). doi:10.1109\/TC.2019.2935042.","journal-title":"IEEE Trans. Comput."},{"key":"1815_CR20","doi-asserted-by":"crossref","unstructured":"D. Chao, C. L. Chen, K. He, X. Tang, in European Conference on Computer Vision. Learning a deep convolutional network for image super-resolution, (2014), pp. 184\u2013199. doi:10.1007\/978-3-319-10593-2\\_13.","DOI":"10.1007\/978-3-319-10593-2"},{"issue":"12","key":"1815_CR21","doi-asserted-by":"publisher","first-page":"7392","DOI":"10.1109\/TII.2019.2960837","volume":"16","author":"H. Zhu","year":"2020","unstructured":"H. Zhu, Y. Qiao, G. Xu, L. Deng, Y. Yu-Feng, DSPNet: a lightweight dilated convolution neural networks for spectral deconvolution with self-paced learning. IEEE Trans. Ind. Inform.16(12), 7392\u20137401 (2020). doi:10.1109\/TII.2019.2960837.","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"12","key":"1815_CR22","doi-asserted-by":"publisher","first-page":"2215","DOI":"10.1109\/TCAD.2018.2883993","volume":"38","author":"J. Zhou","year":"2018","unstructured":"J. Zhou, J. Sun, X. Zhou, T. Wei, M. Chen, S. Hu, X. S. Hu, Resource management for improving soft-error and lifetime reliability of real-time MPSoCs. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.38(12), 2215\u20132228 (2018). doi:10.1109\/TCAD.2018.2883993.","journal-title":"IEEE Trans. Comput. Aided Des. Integr. Circ. Syst."},{"issue":"4","key":"1815_CR23","doi-asserted-by":"publisher","first-page":"2622","DOI":"10.1109\/JIOT.2019.2944007","volume":"7","author":"X. Xu","year":"2019","unstructured":"X. Xu, C. He, Z. Xu, L. Qi, S. Wan, M. Z. A. Bhuiyan, Joint optimization of offloading utility and privacy for edge computing enabled IoT. IEEE Internet of Things J.7(4), 2622\u20132629 (2019). doi:10.1109\/JIOT.2019.2944007.","journal-title":"IEEE Internet of Things J."},{"key":"1815_CR24","doi-asserted-by":"crossref","unstructured":"Y. -F. Yu, G. Xu, M. Jiang, H. Zhu, D. -Q. Dai, H. Yan, Joint transformation learning via the L2,1-norm metric for robust graph matching. IEEE Trans. Cybern., 1\u201313 (2019). doi:10.1109\/TCYB.2019.2912718.","DOI":"10.1109\/TCYB.2019.2912718"},{"issue":"6","key":"1815_CR25","doi-asserted-by":"crossref","first-page":"1529","DOI":"10.1109\/TIP.2010.2095871","volume":"20","author":"J. Sun","year":"2010","unstructured":"J. Sun, Z. Xu, H. -Y. Shum, Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans. Image Process.20(6), 1529\u20131542 (2010). doi:10.1109\/TIP.2010.2095871.","journal-title":"IEEE Trans. Image Process."},{"key":"1815_CR26","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1016\/j.patcog.2017.01.021","volume":"66","author":"Y. Yu","year":"2017","unstructured":"Y. Yu, D. Dai, C. Ren, K. Huang, Discriminative multi-scale sparse coding for single-sample face recognition with occlusion. Pattern Recognit.66:, 302\u2013312 (2017). doi:10.1016\/j.patcog.2017.01.021.","journal-title":"Pattern Recognit."},{"issue":"1","key":"1815_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13638-015-0498-8","volume":"2019","author":"H. Liu","year":"2019","unstructured":"H. Liu, H. Kou, C. Yan, L. Qi, Link prediction in paper citation network to construct paper correlation graph. EURASIP J. Wirel. Commun. Netw.2019(1), 1\u201312 (2019). doi:10.1186\/s13638-019-1561-7.","journal-title":"EURASIP J. Wirel. Commun. Netw."},{"key":"1815_CR28","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1016\/j.ins.2019.11.021","volume":"515","author":"L. Qi","year":"2020","unstructured":"L. Qi, X. Zhang, S. Li, S. Wan, Y. Wen, W. Gong, Spatial-temporal data-driven service recommendation with privacy-preservation. Inf. Sci.515:, 91\u2013102 (2020). doi:10.1016\/j.ins.2019.11.021.","journal-title":"Inf. Sci."},{"key":"1815_CR29","doi-asserted-by":"publisher","first-page":"168","DOI":"10.1016\/j.infrared.2016.02.010","volume":"76","author":"L. Deng","year":"2016","unstructured":"L. Deng, H. Zhu, C. Tao, Y. Wei, Infrared moving point target detection based on spatial-temporal local contrast filter. Infrared Phys. Technol.76:, 168\u2013173 (2016). doi:10.1016\/j.infrared.2016.02.010.","journal-title":"Infrared Phys. Technol."},{"key":"1815_CR30","doi-asserted-by":"publisher","first-page":"116","DOI":"10.1016\/j.comcom.2020.04.018","volume":"157","author":"W. Zhong","year":"2020","unstructured":"W. Zhong, X. Yin, X. Zhang, S. Li, W. Dou, R. Wang, L. Qi, Multi-dimensional quality-driven service recommendation with privacy-preservation in mobile edge environment. Comput. Commun.157:, 116\u2013123 (2020). doi:10.1016\/j.comcom.2020.04.018.","journal-title":"Comput. Commun."},{"key":"1815_CR31","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1007\/s10915-008-9214-8","volume":"37","author":"A. Marquina","year":"2008","unstructured":"A. Marquina, S. Osher, Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput.37:, 367\u2013382 (2008). doi:10.1007\/s10915-008-9214-8.","journal-title":"J. Sci. Comput."},{"key":"1815_CR32","doi-asserted-by":"publisher","first-page":"268","DOI":"10.1179\/1743131X11Y.0000000064","volume":"61","author":"W. Zeng","year":"2013","unstructured":"W. Zeng, X. Lu, A robust variational approach to super-resolution with nonlocal TV regularisation term. Imaging Sci. J.61:, 268\u2013278 (2013). doi:10.1179\/1743131X11Y.0000000064.","journal-title":"Imaging Sci. J."},{"key":"1815_CR33","doi-asserted-by":"publisher","first-page":"1327","DOI":"10.1109\/TIP.2004.834669","volume":"13","author":"S. Farsiu","year":"2004","unstructured":"S. Farsiu, M. D. Robinson, M. Elad, P. Milanfar, Fast and robust multiframe super resolution. IEEE Trans. Image Process.13:, 1327\u20131344 (2004). doi:10.1109\/TIP.2004.834669.","journal-title":"IEEE Trans. Image Process."},{"key":"1815_CR34","doi-asserted-by":"crossref","unstructured":"X. Chi, C. Yan, H. Wang, W. Rafique, L. Qi, Amplified locality-sensitive hashing-based recommender systems with privacy protection. Concurr. Comput. Pract. Experience, e5681 (2020). doi:10.1002\/cpe.5681.","DOI":"10.1002\/cpe.5681"},{"key":"1815_CR35","doi-asserted-by":"publisher","first-page":"485","DOI":"10.1016\/j.knosys.2018.09.011","volume":"163","author":"X. Yuan","year":"2019","unstructured":"X. Yuan, L. Han, S. Qian, G. Xu, H. Yan, Singular value decomposition based recommendation using imputed data. Knowl.-Based Syst.163:, 485\u2013494 (2019). doi:10.1016\/j.knosys.2018.09.011.","journal-title":"Knowl.-Based Syst."},{"key":"1815_CR36","doi-asserted-by":"crossref","unstructured":"L. Qi, Q. He, F. Chen, X. Zhang, W. Dou, Q. Ni, Data-driven web APIs recommendation for building web applications. IEEE Trans. Big Data, 1\u20131 (2020). doi:10.1109\/TBDATA.2020.2975587.","DOI":"10.1109\/TBDATA.2020.2975587"},{"key":"1815_CR37","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1007\/s10915-008-9214-8","volume":"37","author":"A. Marquina","year":"2008","unstructured":"A. Marquina, S. J. Osher, Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput.37:, 367\u2013382 (2008). doi:10.1007\/s10915-008-9214-8.","journal-title":"J. Sci. Comput."},{"key":"1815_CR38","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1109\/TCSVT.2011.2163447","volume":"22","author":"Q. Yuan","year":"2012","unstructured":"Q. Yuan, L. Zhang, H. Shen, Multiframe super-resolution employing a spatially weighted total variation mode. IEEE Trans. Circ. Syst. Video Technol.22:, 379\u2013392 (2012). doi:10.1109\/TCSVT.2011.2163447.","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"1815_CR39","doi-asserted-by":"publisher","first-page":"551","DOI":"10.1016\/j.neucom.2014.02.045","volume":"142","author":"L. Li","year":"2014","unstructured":"L. Li, Y. Xie, W. Hu, W. Zhang, Single image super-resolution using combined total variation regularization by split Bregman Iteration. Neurocomputing. 142:, 551\u2013560 (2014). doi:10.1016\/j.neucom.2014.02.045.","journal-title":"Neurocomputing"},{"key":"1815_CR40","doi-asserted-by":"publisher","first-page":"791","DOI":"10.1007\/s11280-018-0555-4","volume":"22","author":"G. Xu","year":"2019","unstructured":"G. Xu, H. Zhu, L. Deng, L. Han, Y. Li, H. Lu, Dilated-aware discriminative correlation filter for visual tracking. World Wide Web. 22:, 791\u2013805 (2019). doi:10.1007\/s11280-018-0555-4.","journal-title":"World Wide Web"},{"key":"1815_CR41","doi-asserted-by":"publisher","first-page":"2497","DOI":"10.1016\/j.ijleo.2013.10.093","volume":"125","author":"J. Lu","year":"2014","unstructured":"J. Lu, B. Wu, Single-image super-resolution with joint-optimization of TV regularization and sparse representation. Optik. 125:, 2497\u20132504 (2014). doi:10.1016\/j.ijleo.2013.10.093.","journal-title":"Optik"},{"key":"1815_CR42","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1137\/140977400","volume":"8","author":"H. Schaeffer","year":"2015","unstructured":"H. Schaeffer, Y. Yi, S. Osher, Space-time regularization for video decompression. SIAM J. Imaging Sci.8:, 373\u2013402 (2015). doi:10.1137\/140977400.","journal-title":"SIAM J. Imaging Sci."},{"key":"1815_CR43","doi-asserted-by":"crossref","unstructured":"L. Qi, X. Wang, X. Xu, W. Dou, S. Li, Privacy-aware cross-platform service recommendation based on enhanced locality-sensitive hashing. IEEE Trans. Netw. Sci. Eng., 1\u20131 (2020). doi:10.1109\/TNSE.2020.2969489.","DOI":"10.1109\/TNSE.2020.2969489"},{"key":"1815_CR44","doi-asserted-by":"crossref","unstructured":"X. J. Chen, G. Q. Han, Z. Li, X. Liao, in 2013 International Conference on Wavelet Analysis and Pattern Recognition. Image super-resolution via multi-resolution image sequence, (2013), pp. 178\u2013183. doi:10.1109\/ICWAPR.2013.6599313.","DOI":"10.1109\/ICWAPR.2013.6599313"},{"key":"1815_CR45","doi-asserted-by":"publisher","first-page":"104314","DOI":"10.1016\/j.cageo.2019.104314","volume":"133","author":"Y. Wang","year":"2019","unstructured":"Y. Wang, Q. Teng, X. He, J. Feng, T. Zhang, CT-image of rock samples super resolution using 3D convolutional neural network. Comput. Geosci.133:, 104314 (2019). \n https:\/\/doi.org\/10.1016\/j.cageo.2019.104314\n \n .","journal-title":"Comput. Geosci."},{"key":"1815_CR46","doi-asserted-by":"crossref","unstructured":"X. Wang, L. T. Yang, Y. Wang, L. Ren, M. J. Deen, ADTT: a highly-efficient distributed tensor-train decomposition method for IIoT big data. IEEE Trans. Ind. Inform., 1\u20131 (2020). doi:10.1109\/TII.2020.2967768.","DOI":"10.1109\/TII.2020.2967768"},{"key":"1815_CR47","doi-asserted-by":"publisher","first-page":"507","DOI":"10.1007\/s10589-013-9576-1","volume":"53","author":"C. Li","year":"2013","unstructured":"C. Li, W. Yin, H. Jiang, Y. Zhang, An efficient augmented lagrangian method with applications to total variation minimization. Comput. Optim. Appl.53:, 507\u2013530 (2013). doi:10.1007\/s10589-013-9576-1.","journal-title":"Comput. Optim. Appl."},{"key":"1815_CR48","unstructured":"C. Gao, N. Wang, Q. Yu, Z. Zhang, in Aaai. A feasible nonconvex relaxation approach to feature selection, (2011), pp. 356\u2013361. doi:10.5555\/29004232900479."},{"key":"1815_CR49","doi-asserted-by":"crossref","unstructured":"C. Lu, J. Tang, S. Yan, Z. Lin, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Generalized nonconvex nonsmooth low-rank minimization, (2014), pp. 4130\u20134137. doi:10.1109\/CVPR.2014.526.","DOI":"10.1109\/CVPR.2014.526"},{"key":"1815_CR50","doi-asserted-by":"crossref","unstructured":"H. Zhu, S. Liu, L. Deng, Y. Li, F. Xiao, Infrared small target detection via low-rank tensor completion with top-hat regularization. 1004\u20131016. 58: (2019). doi:10.1109\/TGRS.2019.2942384.","DOI":"10.1109\/TGRS.2019.2942384"},{"key":"1815_CR51","doi-asserted-by":"crossref","unstructured":"G. Ongie, M. Jacob, in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). A fast algorithm for structured low-rank matrix recovery with applications to undersampled MRI reconstruction, (2016), pp. 522\u2013525. doi:10.1109\/ISBI.2016.7493322.","DOI":"10.1109\/ISBI.2016.7493322"},{"issue":"1","key":"1815_CR52","first-page":"1","volume":"2020","author":"H. Liu","year":"2020","unstructured":"H. Liu, H. Kou, C. Yan, L. Qi, Keywords-driven and popularity-aware paper recommendation based on undirected paper citation graph. Complexity. 2020(1), 1\u201315 (2020). doi:10.1155\/2020\/2085638.","journal-title":"Complexity"},{"key":"1815_CR53","doi-asserted-by":"crossref","unstructured":"C. Fu, X. Ji, Y. Zhang, Q. Dai, in Data Compression Conference Proceedings. A single frame super-resolution method based on matrix completion, (2012), pp. 297\u2013306. doi:10.1109\/DCC.2012.36.","DOI":"10.1109\/DCC.2012.36"},{"key":"1815_CR54","doi-asserted-by":"crossref","unstructured":"K. Mohan, M. Fazel, in 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Iterative reweighted least squares for matrix rank minimization, (2010), pp. 653\u2013661. doi:10.1109\/ALLERTON.2010.5706969.","DOI":"10.1109\/ALLERTON.2010.5706969"}],"container-title":["EURASIP Journal on Wireless Communications and Networking"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1186\/s13638-020-01815-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1186\/s13638-020-01815-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1186\/s13638-020-01815-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T15:05:34Z","timestamp":1604502334000},"score":1,"resource":{"primary":{"URL":"https:\/\/jwcn-eurasipjournals.springeropen.com\/articles\/10.1186\/s13638-020-01815-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,1]]},"references-count":54,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2020,12]]}},"alternative-id":["1815"],"URL":"https:\/\/doi.org\/10.1186\/s13638-020-01815-0","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.2.23965\/v2","asserted-by":"object"},{"id-type":"doi","id":"10.21203\/rs.2.23965\/v1","asserted-by":"object"},{"id-type":"doi","id":"10.21203\/rs.2.23965\/v3","asserted-by":"object"}]},"ISSN":["1687-1499"],"issn-type":[{"value":"1687-1499","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,11,1]]},"assertion":[{"value":"15 February 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 September 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 November 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare that they have no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"223"}}