{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T04:22:22Z","timestamp":1730262142454,"version":"3.28.0"},"reference-count":61,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,10,4]],"date-time":"2023-10-04T00:00:00Z","timestamp":1696377600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,10,4]],"date-time":"2023-10-04T00:00:00Z","timestamp":1696377600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100003130","name":"Fonds Wetenschappelijk Onderzoek","doi-asserted-by":"publisher","award":["1S86520N"],"id":[{"id":"10.13039\/501100003130","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003130","name":"Fonds Wetenschappelijk Onderzoek","doi-asserted-by":"publisher","award":["12ZD622N"],"id":[{"id":"10.13039\/501100003130","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100019180","name":"HORIZON EUROPE European Research Council","doi-asserted-by":"publisher","award":["773268"],"id":[{"id":"10.13039\/100019180","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J AUDIO SPEECH MUSIC PROC."],"abstract":"Abstract<\/jats:title>In this paper, two approaches are proposed for estimating the direction of arrival (DOA) and power spectral density (PSD) of stationary point sources by using a single, rotating, directional microphone. These approaches are based on a method previously presented by the authors, in which point source DOAs were estimated by using a broadband signal model and solving a group-sparse optimization problem, where the number of observations made by the rotating directional microphone can be lower than the number of candidate DOAs in an angular grid. The DOA estimation is followed by the estimation of the sources\u2019 PSDs through the solution of an overdetermined least squares problem. The first approach proposed in this paper includes the use of an additional nonnegativity constraint on the residual noise term when solving the group-sparse optimization problem and is referred to as the Group Lasso Least Squares (GL-LS) approach. The second proposed approach, in addition to the new nonnegativity constraint, employs a narrowband signal model when building the linear system of equations used for formulating the group-sparse optimization problem, where the DOAs and PSDs can be jointly estimated by iterative, group-wise reweighting. This is referred to as the Group-Lasso with$$l_1$$<\/jats:tex-math>l<\/mml:mi>1<\/mml:mn><\/mml:msub><\/mml:math><\/jats:alternatives><\/jats:inline-formula>-reweighting (GL-L1) approach. Both proposed approaches are implemented using the alternating direction method of multipliers (ADMM), and their performance is evaluated through simulations in which different setup conditions are considered, ranging from different types of model mismatch to variations in the acoustic scene and microphone directivity pattern. The results obtained show that in a scenario involving a microphone response mismatch between observed data and the signal model used, having the additional nonnegativity constraint on the residual noise can improve the DOA estimation for the case of GL-LS and the PSD estimation for the case of GL-L1. Moreover, the GL-L1 approach can present an advantage over GL-LS in terms of DOA estimation performance in scenarios with low SNR or where multiple sources are closely located to each other. Finally, it is shown that having the least squares PSD re-estimation step is beneficial in most scenarios, such that GL-LS outperformed GL-L1 in terms of PSD estimation errors.<\/jats:p>","DOI":"10.1186\/s13636-023-00304-8","type":"journal-article","created":{"date-parts":[[2023,10,4]],"date-time":"2023-10-04T15:01:41Z","timestamp":1696431701000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Direction-of-arrival and power spectral density estimation using a single directional microphone and group-sparse optimization"],"prefix":"10.1186","volume":"2023","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6827-3916","authenticated-orcid":false,"given":"Elisa","family":"Tengan","sequence":"first","affiliation":[]},{"given":"Thomas","family":"Dietzen","sequence":"additional","affiliation":[]},{"given":"Filip","family":"Elvander","sequence":"additional","affiliation":[]},{"given":"Toon","family":"van Waterschoot","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,4]]},"reference":[{"key":"304_CR1","first-page":"269","volume-title":"in Handbook on array processing and sensor networks, Acoustic beamforming for hearing aid applications","author":"S Doclo","year":"2010","unstructured":"S. Doclo, S. Gannot, M. Moonen, A. Spriet, S. Haykin, K.R. Liu, in Handbook on array processing and sensor networks, Acoustic beamforming for hearing aid applications, vol. 9 (Wiley, Hoboken, 2010), pp.269\u2013302"},{"key":"304_CR2","doi-asserted-by":"publisher","DOI":"10.1201\/b14529","volume-title":"Speech Enhancement: Theory and Practice","author":"PC Loizou","year":"2013","unstructured":"P.C. Loizou, Speech Enhancement: Theory and Practice, 2nd edn. (CRC Press, Boca Raton, 2013)","edition":"2"},{"key":"304_CR3","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-84996-056-4","volume-title":"Speech dereverberation","author":"PA Naylor","year":"2010","unstructured":"P.A. Naylor, N.D. Gaubitch, Speech dereverberation, vol. 2 (Springer, New York, 2010)"},{"key":"304_CR4","volume-title":"Microphone arrays: signal processing techniques and applications","author":"M Brandstein","year":"2013","unstructured":"M. Brandstein, D. Ward, Microphone arrays: signal processing techniques and applications (Springer, New York, 2013)"},{"key":"304_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13634-016-0306-6","volume":"2016","author":"K Kinoshita","year":"2016","unstructured":"K. Kinoshita, M. Delcroix, S. Gannot, E.A.P. Habets, R. Haeb-Umbach, W. Kellermann, V. Leutnant, R. Maas, T. Nakatani, B. Raj et al., A summary of the reverb challenge: state-of-the-art and remaining challenges in reverberant speech processing research. EURASIP J. Adv. Signal Process. 2016, 1\u201319 (2016)","journal-title":"EURASIP J. Adv. Signal Process."},{"issue":"4","key":"304_CR6","doi-asserted-by":"publisher","first-page":"692","DOI":"10.1109\/TASLP.2016.2647702","volume":"25","author":"S Gannot","year":"2017","unstructured":"S. Gannot, E. Vincent, S. Markovich-Golan, A. Ozerov, A consolidated perspective on multimicrophone speech enhancement and source separation. IEEE\/ACM Trans. Audio Speech Lang. Process. 25(4), 692\u2013730 (2017)","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"304_CR7","doi-asserted-by":"publisher","DOI":"10.1002\/9781119279860","volume-title":"Audio source separation and speech enhancement","author":"E Vincent","year":"2018","unstructured":"E. Vincent, T. Virtanen, S. Gannot, Audio source separation and speech enhancement (Wiley, Hoboken, 2018)"},{"key":"304_CR8","doi-asserted-by":"publisher","unstructured":"F.\u00a0Elvander, R.\u00a0Ali, A.\u00a0Jakobsson, T.\u00a0van Waterschoot, in Proc. 2019 27th European Signal Process. Conf. (EUSIPCO), Offline noise reduction using optimal mass transport induced covariance interpolation (2019), pp. 1\u20135. https:\/\/doi.org\/10.23919\/EUSIPCO.2019.8903159","DOI":"10.23919\/EUSIPCO.2019.8903159"},{"issue":"8","key":"304_CR9","doi-asserted-by":"publisher","first-page":"1408","DOI":"10.1109\/PROC.1969.7278","volume":"57","author":"J Capon","year":"1969","unstructured":"J. Capon, High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE. 57(8), 1408\u20131418 (1969). https:\/\/doi.org\/10.1109\/PROC.1969.7278","journal-title":"Proc. IEEE."},{"issue":"3","key":"304_CR10","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1109\/TAP.1986.1143830","volume":"34","author":"R Schmidt","year":"1986","unstructured":"R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propagat. 34(3), 276\u2013280 (1986). https:\/\/doi.org\/10.1109\/TAP.1986.1143830","journal-title":"IEEE Trans. Antennas Propagat."},{"issue":"4","key":"304_CR11","doi-asserted-by":"publisher","first-page":"320","DOI":"10.1109\/TASSP.1976.1162830","volume":"24","author":"C Knapp","year":"1976","unstructured":"C. Knapp, G. Carter, The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24(4), 320\u2013327 (1976). https:\/\/doi.org\/10.1109\/TASSP.1976.1162830","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"key":"304_CR12","doi-asserted-by":"crossref","unstructured":"J.H. Dibiase, A high-accuracy, low-latency technique for talker localization in reverberant environments using microphone arrays. Ph.D. thesis (Brown University, Rhode Island, 2000)","DOI":"10.1007\/978-3-662-04619-7_8"},{"issue":"8","key":"304_CR13","doi-asserted-by":"publisher","first-page":"3010","DOI":"10.1109\/TSP.2005.850882","volume":"53","author":"D Malioutov","year":"2005","unstructured":"D. Malioutov, M. Cetin, A. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010\u20133022 (2005). https:\/\/doi.org\/10.1109\/TSP.2005.850882","journal-title":"IEEE Trans. Signal Process."},{"issue":"1","key":"304_CR14","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1186\/1687-6180-2014-120","volume":"2014","author":"S Fortunati","year":"2014","unstructured":"S. Fortunati, R. Grasso, F. Gini, M.S. Greco, K. LePage, Single-snapshot DOA estimation by using Compressed Sensing. EURASIP J. Adv. Signal Process. 2014(1), 120 (2014). https:\/\/doi.org\/10.1186\/1687-6180-2014-120","journal-title":"EURASIP J. Adv. Signal Process."},{"issue":"3","key":"304_CR15","doi-asserted-by":"publisher","first-page":"2089","DOI":"10.1121\/10.0003802","volume":"149","author":"Y Park","year":"2021","unstructured":"Y. Park, F. Meyer, P. Gerstoft, Sequential sparse Bayesian learning for time-varying direction of arrival. J. Acoust. Soc. Am. 149(3), 2089\u20132099 (2021). https:\/\/doi.org\/10.1121\/10.0003802","journal-title":"J. Acoust. Soc. Am."},{"key":"304_CR16","doi-asserted-by":"publisher","unstructured":"Z.\u00a0Bai, L.\u00a0Shi, J.R. Jensen, J.\u00a0Sun, M.G. Christensen, Acoustic DOA estimation using space alternating sparse Bayesian learning. EURASIP J. Audio, Speech, Music Process. 2021(1), 14 (2021). https:\/\/doi.org\/10.1186\/s13636-021-00200-z","DOI":"10.1186\/s13636-021-00200-z"},{"key":"304_CR17","doi-asserted-by":"publisher","unstructured":"S.\u00a0Chakrabarty, E.A.P. Habets, in Proc. 2017 IEEE Workshop Appl. Signal Process. Audio, Acoust. (WASPAA), Broadband doa estimation using convolutional neural networks trained with noise signals (IEEE, New Paltz, 2017), pp. 136\u2013140. https:\/\/doi.org\/10.1109\/WASPAA.2017.8170010","DOI":"10.1109\/WASPAA.2017.8170010"},{"issue":"1","key":"304_CR18","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1121\/10.0011809","volume":"152","author":"PA Grumiaux","year":"2022","unstructured":"P.A. Grumiaux, S. Kiti\u0107, L. Girin, A. Gu\u00e9rin, A survey of sound source localization with deep learning methods. J. Acoust. Soc. Am. 152(1), 107\u2013151 (2022). https:\/\/doi.org\/10.1121\/10.0011809","journal-title":"J. Acoust. Soc. Am."},{"issue":"6","key":"304_CR19","doi-asserted-by":"publisher","first-page":"1215","DOI":"10.1016\/j.sigpro.2005.07.037","volume":"86","author":"R Martin","year":"2006","unstructured":"R. Martin, Bias compensation methods for minimum statistics noise power spectral density estimation. Signal Process. 86(6), 1215\u20131229 (2006). https:\/\/doi.org\/10.1016\/j.sigpro.2005.07.037","journal-title":"Signal Process."},{"issue":"5","key":"304_CR20","doi-asserted-by":"publisher","first-page":"504","DOI":"10.1109\/89.928915","volume":"9","author":"R Martin","year":"2001","unstructured":"R. Martin, Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE Trans. Speech Audio Process. 9(5), 504\u2013512 (2001). https:\/\/doi.org\/10.1109\/89.928915","journal-title":"IEEE Trans. Speech Audio Process."},{"issue":"6","key":"304_CR21","doi-asserted-by":"publisher","first-page":"1109","DOI":"10.1109\/TASSP.1984.1164453","volume":"32","author":"Y Ephraim","year":"1984","unstructured":"Y. Ephraim, D. Malah, Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 32(6), 1109\u20131121 (1984). https:\/\/doi.org\/10.1109\/TASSP.1984.1164453","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"issue":"4","key":"304_CR22","doi-asserted-by":"publisher","first-page":"1383","DOI":"10.1109\/TASL.2011.2180896","volume":"20","author":"T Gerkmann","year":"2012","unstructured":"T. Gerkmann, R.C. Hendriks, Unbiased MMSE-Based Noise Power Estimation With Low Complexity and Low Tracking Delay. IEEE Trans. Audio Speech Lang. Process. 20(4), 1383\u20131393 (2012). https:\/\/doi.org\/10.1109\/TASL.2011.2180896","journal-title":"IEEE Trans. Audio Speech Lang. Process."},{"key":"304_CR23","doi-asserted-by":"publisher","unstructured":"G.\u00a0Enzner, P.\u00a0Thune, in Proc. 2017 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Robust MMSE filtering for single-microphone speech enhancement (IEEE, New Orleans, 2017), pp. 4009\u20134013. https:\/\/doi.org\/10.1109\/ICASSP.2017.7952909","DOI":"10.1109\/ICASSP.2017.7952909"},{"issue":"1","key":"304_CR24","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1109\/97.988717","volume":"9","author":"I Cohen","year":"2002","unstructured":"I. Cohen, B. Berdugo, Noise estimation by minima controlled recursive averaging for robust speech enhancement. IEEE Signal Process. Lett. 9(1), 12\u201315 (2002). https:\/\/doi.org\/10.1109\/97.988717","journal-title":"IEEE Signal Process. Lett."},{"issue":"5","key":"304_CR25","doi-asserted-by":"publisher","first-page":"466","DOI":"10.1109\/TSA.2003.811544","volume":"11","author":"I Cohen","year":"2003","unstructured":"I. Cohen, Noise spectrum estimation in adverse environments: Improved minima controlled recursive averaging. IEEE Trans. Speech Audio Process. 11(5), 466\u2013475 (2003). https:\/\/doi.org\/10.1109\/TSA.2003.811544","journal-title":"IEEE Trans. Speech Audio Process."},{"key":"304_CR26","doi-asserted-by":"publisher","unstructured":"N.\u00a0Fan, J.\u00a0Rosca, R.\u00a0Balan, in Proc. 2007 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Speech Noise Estimation using Enhanced Minima Controlled Recursive Averaging (IEEE, Honolulu, 2007), pp. IV\u2013581\u2013IV\u2013584. https:\/\/doi.org\/10.1109\/ICASSP.2007.366979","DOI":"10.1109\/ICASSP.2007.366979"},{"issue":"7","key":"304_CR27","doi-asserted-by":"publisher","first-page":"624","DOI":"10.1109\/LSP.2009.2019351","volume":"16","author":"J-M Kum","year":"2009","unstructured":"J.-M. Kum, J.-H. Chang, Speech Enhancement Based on Minima Controlled Recursive Averaging Incorporating Second-Order Conditional MAP Criterion. IEEE Signal Process. Lett. 16(7), 624\u2013627 (2009). https:\/\/doi.org\/10.1109\/LSP.2009.2019351","journal-title":"IEEE Signal Process. Lett."},{"issue":"2","key":"304_CR28","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1016\/j.specom.2005.08.005","volume":"48","author":"S Rangachari","year":"2006","unstructured":"S. Rangachari, P.C. Loizou, A noise-estimation algorithm for highly non-stationary environments. Speech Commun. 48(2), 220\u2013231 (2006). https:\/\/doi.org\/10.1016\/j.specom.2005.08.005","journal-title":"Speech Commun."},{"issue":"3","key":"304_CR29","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1109\/TASL.2007.914977","volume":"16","author":"R Hendriks","year":"2008","unstructured":"R. Hendriks, J. Jensen, R. Heusdens, Noise Tracking Using DFT Domain Subspace Decompositions. IEEE Trans. Audio Speech Lang. Process. 16(3), 541\u2013553 (2008). https:\/\/doi.org\/10.1109\/TASL.2007.914977","journal-title":"IEEE Trans. Audio Speech Lang. Process."},{"key":"304_CR30","doi-asserted-by":"publisher","first-page":"755","DOI":"10.1109\/TASLP.2020.2966891","volume":"28","author":"T Dietzen","year":"2020","unstructured":"T. Dietzen, S. Doclo, M. Moonen, T. van Waterschoot, Square root-based multi-source early PSD estimation and recursive RETF update in reverberant environments by means of the orthogonal Procrustes problem. IEEE\/ACM Trans. Audio Speech Lang. Process. 28, 755\u2013769 (2020)","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"304_CR31","doi-asserted-by":"publisher","first-page":"26","DOI":"10.1016\/j.apacoust.2017.05.010","volume":"126","author":"N Pan","year":"2017","unstructured":"N. Pan, J. Benesty, J. Chen, On single-channel noise reduction with rank-deficient noise correlation matrix. Appl. Acoust. 126, 26\u201335 (2017). https:\/\/doi.org\/10.1016\/j.apacoust.2017.05.010","journal-title":"Appl. Acoust."},{"key":"304_CR32","doi-asserted-by":"publisher","first-page":"1404","DOI":"10.1109\/TASLP.2020.2987441","volume":"28","author":"Q Zhang","year":"2020","unstructured":"Q. Zhang, A. Nicolson, M. Wang, K.K. Paliwal, C. Wang, DeepMMSE: A Deep Learning Approach to MMSE-Based Noise Power Spectral Density Estimation. IEEE\/ACM Trans. Audio Speech Lang. Process. 28, 1404\u20131415 (2020). https:\/\/doi.org\/10.1109\/TASLP.2020.2987441","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"304_CR33","doi-asserted-by":"publisher","unstructured":"H.\u00a0Zhao, S.\u00a0Zarar, I.\u00a0Tashev, C.H. Lee, in Proc. 2018 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Convolutional-Recurrent Neural Networks for Speech Enhancement (IEEE, Calgary, 2018), pp. 2401\u20132405. https:\/\/doi.org\/10.1109\/ICASSP.2018.8462155","DOI":"10.1109\/ICASSP.2018.8462155"},{"issue":"6","key":"304_CR34","doi-asserted-by":"publisher","first-page":"918","DOI":"10.1109\/LSP.2019.2911879","volume":"26","author":"X Li","year":"2019","unstructured":"X. Li, S. Leglaive, L. Girin, R. Horaud, Audio-Noise Power Spectral Density Estimation Using Long Short-Term Memory. IEEE Signal Process. Lett. 26(6), 918\u2013922 (2019). https:\/\/doi.org\/10.1109\/LSP.2019.2911879","journal-title":"IEEE Signal Process. Lett."},{"issue":"1","key":"304_CR35","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1109\/TASLP.2016.2628641","volume":"25","author":"M Kolbk","year":"2017","unstructured":"M. Kolbk, Z.H. Tan, J. Jensen, Speech Intelligibility Potential of General and Specialized Deep Neural Network Based Speech Enhancement Systems. IEEE\/ACM Trans. Audio Speech Lang. Process. 25(1), 153\u2013167 (2017). https:\/\/doi.org\/10.1109\/TASLP.2016.2628641","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"304_CR36","doi-asserted-by":"publisher","unstructured":"J.\u00a0Benesty, J.\u00a0Chen, Y.\u00a0Huang, Microphone Array Signal Processing , Springer Topics in Signal Processing, vol.\u00a01 (Springer, Berlin, Heidelberg, 2008). https:\/\/doi.org\/10.1007\/978-3-540-78612-2","DOI":"10.1007\/978-3-540-78612-2"},{"key":"304_CR37","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-02564-8","volume-title":"DFT-Domain Based Single-Microphone Noise Reduction for Speech Enhancement: A Survey of the State of the Art","author":"RC Hendriks","year":"2013","unstructured":"R.C. Hendriks, T. Gerkmann, J. Jensen, DFT-Domain Based Single-Microphone Noise Reduction for Speech Enhancement: A Survey of the State of the Art, vol. 9 (Morgan & Claypool, San Rafael, 2013)"},{"issue":"4","key":"304_CR38","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1109\/MSP.2016.2555198","volume":"33","author":"A Plinge","year":"2016","unstructured":"A. Plinge, F. Jacob, R. Haeb-Umbach, G.A. Fink, Acoustic Microphone Geometry Calibration: An overview and experimental evaluation of state-of-the-art algorithms. IEEE Signal Process. Mag. 33(4), 14\u201329 (2016). https:\/\/doi.org\/10.1109\/MSP.2016.2555198","journal-title":"IEEE Signal Process. Mag."},{"issue":"2","key":"304_CR39","doi-asserted-by":"publisher","first-page":"102","DOI":"10.1177\/1084713812456906","volume":"16","author":"K Kokkinakis","year":"2012","unstructured":"K. Kokkinakis, B. Azimi, Y. Hu, D.R. Friedland, Single and multiple microphone noise reduction strategies in cochlear implants. Trends Amplif. 16(2), 102\u2013116 (2012). https:\/\/doi.org\/10.1177\/1084713812456906","journal-title":"Trends Amplif."},{"key":"304_CR40","doi-asserted-by":"publisher","unstructured":"A. Saxena, A.Y. Ng, in, IEEE Int. Conf. Robot. Autom. (ICRA) Proceedings. Learning sound location from a single microphone 2009, 1737\u20131742 (2009). https:\/\/doi.org\/10.1109\/ROBOT.2009.5152861","DOI":"10.1109\/ROBOT.2009.5152861"},{"key":"304_CR41","doi-asserted-by":"publisher","unstructured":"Y.\u00a0Hioka, R.\u00a0Drage, T.\u00a0Boag, E.\u00a0Everall, in Proc. 2018 Int. Workshop Acoustic Signal Enhancement (IWAENC), Direction of arrival estimation using a circularly moving microphone (IEEE, Tokyo, 2018), pp. 91\u201395. https:\/\/doi.org\/10.1109\/IWAENC.2018.8521297","DOI":"10.1109\/IWAENC.2018.8521297"},{"issue":"3","key":"304_CR42","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1109\/48.855379","volume":"25","author":"S Jesus","year":"2000","unstructured":"S. Jesus, M. Porter, Y. Stephan, X. Demoulin, O. Rodriguez, E. Coelho, Single hydrophone source localization. IEEE J. Oceanic Eng. 25(3), 337\u2013346 (2000). https:\/\/doi.org\/10.1109\/48.855379","journal-title":"IEEE J. Oceanic Eng."},{"key":"304_CR43","doi-asserted-by":"publisher","unstructured":"E.\u00a0Tengan, M.\u00a0Taseska, T.\u00a0Dietzen, T.\u00a0van Waterschoot, in Proc. 2021 29th European Signal Process. Conf. (EUSIPCO), Direction-of-arrival and power spectral density estimation using a single directional microphone (2021), pp. 221\u2013225. https:\/\/doi.org\/10.23919\/EUSIPCO54536.2021.9616239","DOI":"10.23919\/EUSIPCO54536.2021.9616239"},{"issue":"9","key":"304_CR44","doi-asserted-by":"publisher","first-page":"1445","DOI":"10.1109\/TASLP.2015.2436214","volume":"23","author":"Q Shen","year":"2015","unstructured":"Q. Shen, W. Liu, W. Cui, S. Wu, Y.D. Zhang, M.G. Amin, Low-complexity direction-of-arrival estimation based on wideband co-prime arrays. IEEE\/ACM Trans. Audio Speech Lang. Process. 23(9), 1445\u20131456 (2015). https:\/\/doi.org\/10.1109\/TASLP.2015.2436214","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"304_CR45","doi-asserted-by":"publisher","unstructured":"Y.\u00a0Hioka, K.\u00a0Niwa, in Proc. 2014 Int. Workshop Acoustic Signal Enhancement (IWAENC), PSD estimation in beamspace for source separation in a diffuse noise field (Juan-les-Pins, France, 2014), pp. 85\u201388. https:\/\/doi.org\/10.1109\/IWAENC.2014.6953343","DOI":"10.1109\/IWAENC.2014.6953343"},{"key":"304_CR46","doi-asserted-by":"publisher","unstructured":"K.\u00a0Niwa, T.\u00a0Kawase, K.\u00a0Kobayashi, Y.\u00a0Hioka, in Proc. 2016 Int. Workshop Acoustic Signal Enhancement (IWAENC), PSD estimation in beamspace using property of M-matrix (Xi\u2019an, China, 2016), pp. 1\u20135. https:\/\/doi.org\/10.1109\/IWAENC.2016.7602965","DOI":"10.1109\/IWAENC.2016.7602965"},{"key":"304_CR47","unstructured":"M.\u00a0Grant, S.\u00a0Boyd. CVX: Matlab software for disciplined convex programming, version 2.1. https:\/\/cvxr.com\/cvx (2014).\u00a0Accessed 12 Sep 2023"},{"issue":"1","key":"304_CR48","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1111\/j.1467-9868.2005.00532.x","volume":"68","author":"M Yuan","year":"2006","unstructured":"M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables. J Royal Statistical Soc B. 68(1), 49\u201367 (2006). https:\/\/doi.org\/10.1111\/j.1467-9868.2005.00532.x","journal-title":"J Royal Statistical Soc B."},{"key":"304_CR49","volume-title":"A Course in Digital Signal Processing","author":"B Porat","year":"1997","unstructured":"B. Porat, A Course in Digital Signal Processing (John Wiley, New York, 1997)"},{"key":"304_CR50","doi-asserted-by":"publisher","DOI":"10.1201\/b18401","volume-title":"Statistical Learning with Sparsity: The Lasso and Generalizations","author":"T Hastie","year":"2015","unstructured":"T. Hastie, R. Tibshirani, M. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations (CRC Press LLC, New York, 2015)"},{"key":"304_CR51","doi-asserted-by":"publisher","unstructured":"E.J. Cand\u00e8s, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted $$\\ell_1$$ minimization. J. Fourier Anal. Appl. 14(5\u20136), 877\u2013905 (2008). https:\/\/doi.org\/10.1007\/s00041-008-9045-x","DOI":"10.1007\/s00041-008-9045-x"},{"key":"304_CR52","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.sigpro.2016.02.015","volume":"127","author":"F Elvander","year":"2016","unstructured":"F. Elvander, T. Kronvall, S. Adalbj\u00f6rnsson, A. Jakobsson, An adaptive penalty multi-pitch estimator with self-regularization. Signal Process. 127, 56\u201370 (2016). https:\/\/doi.org\/10.1016\/j.sigpro.2016.02.015","journal-title":"Signal Process."},{"key":"304_CR53","doi-asserted-by":"publisher","unstructured":"R.\u00a0Chartrand, Wotao Yin, in Proc. 2008 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Iteratively reweighted algorithms for compressive sensing (IEEE, Las Vegas, 2008), pp. 3869\u20133872. https:\/\/doi.org\/10.1109\/ICASSP.2008.4518498","DOI":"10.1109\/ICASSP.2008.4518498"},{"key":"304_CR54","doi-asserted-by":"publisher","unstructured":"D. Wipf, S. Nagarajan, Iterative Reweighted $$l_1$$ and $$l_2$$ Methods for Finding Sparse Solutions. IEEE J. Sel. Top. Signal Process. 4(2), 317\u2013329 (2010). https:\/\/doi.org\/10.1109\/JSTSP.2010.2042413","DOI":"10.1109\/JSTSP.2010.2042413"},{"issue":"1","key":"304_CR55","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1561\/2200000016","volume":"3","author":"S Boyd","year":"2010","unstructured":"S. Boyd, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 3(1), 1\u2013122 (2010). https:\/\/doi.org\/10.1561\/2200000016","journal-title":"Found. Trends Mach. Learn."},{"issue":"1","key":"304_CR56","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1137\/0613024","volume":"13","author":"JR Gilbert","year":"1992","unstructured":"J.R. Gilbert, C. Moler, R. Schreiber, Sparse matrices in MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl. 13(1), 333\u2013356 (1992). https:\/\/doi.org\/10.1137\/0613024","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"304_CR57","doi-asserted-by":"publisher","unstructured":"I.S. Duff, A.M. Erisman, J.K. Reid, Direct methods for sparse matrices (Oxford University Press, Oxford, 2017). https:\/\/doi.org\/10.1093\/acprof:oso\/9780198508380.001.0001","DOI":"10.1093\/acprof:oso\/9780198508380.001.0001"},{"key":"304_CR58","unstructured":"Bang and Olufsen, Music for Archimedes. CD B&O 101 (1992)"},{"key":"304_CR59","doi-asserted-by":"publisher","DOI":"10.1201\/9781315372150","volume-title":"Room acoustics","author":"H Kuttruff","year":"2016","unstructured":"H. Kuttruff, Room acoustics (CRC Press, Boca Raton, 2016)"},{"key":"304_CR60","unstructured":"E.\u00a0Habets, Room impulse response generator. Tech. rep. (2006)"},{"issue":"1","key":"304_CR61","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1109\/TASL.2011.2159204","volume":"20","author":"E De Sena","year":"2012","unstructured":"E. De Sena, H. Hacihabiboglu, Z. Cvetkovic, On the Design and Implementation of Higher Order Differential Microphones. IEEE Trans. Audio Speech Lang. Process. 20(1), 162\u2013174 (2012). https:\/\/doi.org\/10.1109\/TASL.2011.2159204","journal-title":"IEEE Trans. Audio Speech Lang. Process."}],"container-title":["EURASIP Journal on Audio, Speech, and Music Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13636-023-00304-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1186\/s13636-023-00304-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13636-023-00304-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T00:55:52Z","timestamp":1730249752000},"score":1,"resource":{"primary":{"URL":"https:\/\/asmp-eurasipjournals.springeropen.com\/articles\/10.1186\/s13636-023-00304-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,4]]},"references-count":61,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["304"],"URL":"https:\/\/doi.org\/10.1186\/s13636-023-00304-8","relation":{},"ISSN":["1687-4722"],"issn-type":[{"type":"electronic","value":"1687-4722"}],"subject":[],"published":{"date-parts":[[2023,10,4]]},"assertion":[{"value":"9 June 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"31 August 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"4 October 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"Not applicable.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval and consent to participate"}},{"value":"Not applicable.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}},{"value":"The authors declare that they have no competing interests.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"38"}}