{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T04:28:23Z","timestamp":1727756903298},"reference-count":71,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2024,9,27]],"date-time":"2024-09-27T00:00:00Z","timestamp":1727395200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0"},{"start":{"date-parts":[[2024,9,27]],"date-time":"2024-09-27T00:00:00Z","timestamp":1727395200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0"}],"funder":[{"DOI":"10.13039\/501100001807","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","doi-asserted-by":"publisher","award":["014\/50851-0"],"id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["EURASIP J. Adv. Signal Process."],"DOI":"10.1186\/s13634-024-01165-9","type":"journal-article","created":{"date-parts":[[2024,9,27]],"date-time":"2024-09-27T09:02:35Z","timestamp":1727427755000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["The time lag in local field potential signals for the development of its Bayesian belief network"],"prefix":"10.1186","volume":"2024","author":[{"given":"Victor H. B.","family":"Tsukahara","sequence":"first","affiliation":[]},{"given":"Jord\u00e3o N. O.","family":"Junior","sequence":"additional","affiliation":[]},{"given":"Tamiris","family":"Prizon","sequence":"additional","affiliation":[]},{"given":"Rafael N.","family":"Ruggiero","sequence":"additional","affiliation":[]},{"given":"Carlos D.","family":"Maciel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,27]]},"reference":[{"key":"1165_CR1","doi-asserted-by":"publisher","first-page":"1138643","DOI":"10.3389\/fphy.2023.1138643","volume":"11","author":"VL Galinsky","year":"2023","unstructured":"V.L. Galinsky, L.R. Frank, Critical brain wave dynamics of neuronal avalanches. Front. Phys. 11, 1138643 (2023)","journal-title":"Front. Phys."},{"issue":"3","key":"1165_CR2","doi-asserted-by":"publisher","first-page":"003685042110311","DOI":"10.1177\/00368504211031117","volume":"104","author":"C Zhao","year":"2021","unstructured":"C. Zhao, S.-S. Bao, M. Xu, J.-S. Rao, Importance of brain alterations in spinal cord injury. Sci. Prog. 104(3), 00368504211031117 (2021)","journal-title":"Sci. Prog."},{"issue":"3","key":"1165_CR3","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1162\/jocn_a_01908","volume":"35","author":"L Pessoa","year":"2023","unstructured":"L. Pessoa, The entangled brain. J. Cogn. Neurosci. 35(3), 349\u2013360 (2023)","journal-title":"J. Cogn. Neurosci."},{"issue":"3","key":"1165_CR4","doi-asserted-by":"publisher","first-page":"360","DOI":"10.3390\/e22030360","volume":"22","author":"P Jiang","year":"2020","unstructured":"P. Jiang, P. Kumar, Bundled causal history interaction. Entropy 22(3), 360 (2020)","journal-title":"Entropy"},{"key":"1165_CR5","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1146\/annurev-neuro-101222-110632","volume":"46","author":"G Buzs\u00e1ki","year":"2023","unstructured":"G. Buzs\u00e1ki, D. Tingley, Cognition from the body-brain partnership: exaptation of memory. Annu. Rev. Neurosci. 46, 191\u2013210 (2023)","journal-title":"Annu. Rev. Neurosci."},{"issue":"5","key":"1165_CR6","doi-asserted-by":"publisher","first-page":"694","DOI":"10.1038\/s41593-021-00820-w","volume":"24","author":"M El-Gaby","year":"2021","unstructured":"M. El-Gaby, H.M. Reeve, V. Lopes-dos-Santos, N. Campo-Urriza, P.V. Perestenko, A. Morley, L.A. Strickland, I.P. Luk\u00e1cs, O. Paulsen, D. Dupret, An emergent neural coactivity code for dynamic memory. Nat. Neurosci. 24(5), 694\u2013704 (2021)","journal-title":"Nat. Neurosci."},{"key":"1165_CR7","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2020.117632","volume":"227","author":"K Zhuang","year":"2021","unstructured":"K. Zhuang, W. Yang, Y. Li, J. Zhang, Q. Chen, J. Meng, D. Wei, J. Sun, L. He, Y. Mao, Connectome-based evidence for creative thinking as an emergent property of ordinary cognitive operations. Neuroimage 227, 117632 (2021)","journal-title":"Neuroimage"},{"issue":"2","key":"1165_CR8","doi-asserted-by":"publisher","first-page":"581","DOI":"10.1111\/bjet.13264","volume":"54","author":"Y-Y Wang","year":"2023","unstructured":"Y.-Y. Wang, T.-H. Weng, I.-F. Tsai, J.-Y. Kao, Y.-S. Chang, Effects of virtual reality on creativity performance and perceived immersion: a study of brain waves. Br. J. Edu. Technol. 54(2), 581\u2013602 (2023)","journal-title":"Br. J. Edu. Technol."},{"key":"1165_CR9","doi-asserted-by":"publisher","first-page":"382","DOI":"10.1177\/1073858421994784","volume":"28","author":"FE Turkheimer","year":"2021","unstructured":"F.E. Turkheimer, F.E. Rosas, O. Dipasquale, D. Martins, E.D. Fagerholm, P. Expert, F. V\u00e1\u0161a, L.-D. Lord, R. Leech, A complex systems perspective on neuroimaging studies of behavior and its disorders. The Neuroscientist 28, 382\u2013399 (2021)","journal-title":"The Neuroscientist"},{"key":"1165_CR10","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/j.seizure.2021.02.001","volume":"90","author":"RC Scott","year":"2021","unstructured":"R.C. Scott, Brains, complex systems and therapeutic opportunities in epilepsy. Seizure 90, 155\u2013159 (2021)","journal-title":"Seizure"},{"key":"1165_CR11","doi-asserted-by":"publisher","DOI":"10.1016\/j.ridd.2021.104149","volume":"120","author":"T Takano","year":"2022","unstructured":"T. Takano, Self-injury as a predominant challenging behavior in epilepsy: a study in a residential facility for profoundly disabled patients. Res. Dev. Disabil. 120, 104149 (2022)","journal-title":"Res. Dev. Disabil."},{"issue":"1","key":"1165_CR12","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1038\/s41398-023-02365-x","volume":"13","author":"R Zhang","year":"2023","unstructured":"R. Zhang, N.D. Volkow, Seasonality of brain function: role in psychiatric disorders. Transl. Psychiatry 13(1), 65 (2023)","journal-title":"Transl. Psychiatry"},{"key":"1165_CR13","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1016\/j.neunet.2021.01.019","volume":"137","author":"B Boaretto","year":"2021","unstructured":"B. Boaretto, C. Manchein, T. Prado, S. Lopes, The role of individual neuron ion conductances in the synchronization processes of neuron networks. Neural Netw. 137, 97\u2013105 (2021)","journal-title":"Neural Netw."},{"issue":"2","key":"1165_CR14","doi-asserted-by":"publisher","first-page":"0228025","DOI":"10.1371\/journal.pone.0228025","volume":"15","author":"O Stojanovi\u0107","year":"2020","unstructured":"O. Stojanovi\u0107, L. Kuhlmann, G. Pipa, Predicting epileptic seizures using nonnegative matrix factorization. PLoS ONE 15(2), 0228025 (2020)","journal-title":"PLoS ONE"},{"issue":"29","key":"1165_CR15","doi-asserted-by":"publisher","first-page":"5572","DOI":"10.1523\/JNEUROSCI.0905-19.2020","volume":"40","author":"J Courtiol","year":"2020","unstructured":"J. Courtiol, M. Guye, F. Bartolomei, S. Petkoski, V.K. Jirsa, Dynamical mechanisms of interictal resting-state functional connectivity in epilepsy. J. Neurosci. 40(29), 5572\u20135588 (2020)","journal-title":"J. Neurosci."},{"key":"1165_CR16","doi-asserted-by":"publisher","first-page":"945","DOI":"10.3389\/fpsyg.2017.00945","volume":"8","author":"A Nowak","year":"2017","unstructured":"A. Nowak, R.R. Vallacher, M. Zochowski, A. Rychwalska, Functional synchronization: the emergence of coordinated activity in human systems. Front. Psychol. 8, 945 (2017)","journal-title":"Front. Psychol."},{"key":"1165_CR17","doi-asserted-by":"publisher","first-page":"120215","DOI":"10.1016\/j.neuroimage.2023.120215","volume":"96","author":"T Ohad","year":"2023","unstructured":"T. Ohad, Y. Yeshurun, Neural synchronization as a function of engagement with the narrative. NeuroImage 96, 120215 (2023)","journal-title":"NeuroImage"},{"key":"1165_CR18","doi-asserted-by":"publisher","first-page":"105042","DOI":"10.1016\/j.neubiorev.2023.105042","volume":"25","author":"LD Lotter","year":"2023","unstructured":"L.D. Lotter, S.H. Kohl, C. Gerloff, L. Bell, A. Niephaus, J.A. Kruppa, J. Dukart, M. Schulte-R\u00fcther, V. Reindl, K. Konrad, Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion. Neurosci. Biobehav. Rev. 25, 105042 (2023)","journal-title":"Neurosci. Biobehav. Rev."},{"issue":"3","key":"1165_CR19","doi-asserted-by":"publisher","first-page":"547","DOI":"10.1111\/ejn.15894","volume":"57","author":"S Van Herck","year":"2023","unstructured":"S. Van Herck, M. Economou, F. Vanden Bempt, T. Glatz, P. Ghesqui\u00e8re, M. Vandermosten, J. Wouters, Neural synchronization and intervention in pre-readers who later on develop dyslexia. Eur. J. Neurosci. 57(3), 547\u2013567 (2023)","journal-title":"Eur. J. Neurosci."},{"issue":"4","key":"1165_CR20","doi-asserted-by":"publisher","first-page":"1008129","DOI":"10.1371\/journal.pcbi.1008129","volume":"17","author":"A Pariz","year":"2021","unstructured":"A. Pariz, I. Fischer, A. Valizadeh, C. Mirasso, Transmission delays and frequency detuning can regulate information flow between brain regions. PLoS Comput. Biol. 17(4), 1008129 (2021)","journal-title":"PLoS Comput. Biol."},{"issue":"2153","key":"1165_CR21","doi-asserted-by":"publisher","first-page":"20180132","DOI":"10.1098\/rsta.2018.0132","volume":"377","author":"S Petkoski","year":"2019","unstructured":"S. Petkoski, V.K. Jirsa, Transmission time delays organize the brain network synchronization. Philos. Trans. R. Soc. A 377(2153), 20180132 (2019)","journal-title":"Philos. Trans. R. Soc. A"},{"key":"1165_CR22","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1016\/j.physa.2018.05.024","volume":"507","author":"G-Y Zhong","year":"2018","unstructured":"G.-Y. Zhong, J.-C. Li, G.J. Jiang, H.-F. Li, H.-M. Tao, The time delay restraining the herd behavior with Bayesian approach. Physica A 507, 335\u2013346 (2018)","journal-title":"Physica A"},{"key":"1165_CR23","doi-asserted-by":"publisher","first-page":"1001848","DOI":"10.3389\/fnhum.2023.1001848","volume":"17","author":"S Nag","year":"2023","unstructured":"S. Nag, K. Uludag, Dynamic effective connectivity using physiologically informed dynamic causal model with recurrent units: a functional magnetic resonance imaging simulation study. Front. Hum. Neurosci. 17, 1001848 (2023)","journal-title":"Front. Hum. Neurosci."},{"key":"1165_CR24","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2022.104321","volume":"80","author":"X Gao","year":"2023","unstructured":"X. Gao, W. Huang, Y. Liu, Y. Zhang, J. Zhang, C. Li, J.C. Bore, Z. Wang, Y. Si, Y. Tian, A novel robust student\u00e2\u20ac\u2122s t-based granger causality for EEG based brain network analysis. Biomed. Signal Process. Control 80, 104321 (2023)","journal-title":"Biomed. Signal Process. Control"},{"issue":"20","key":"1165_CR25","doi-asserted-by":"publisher","first-page":"10686","DOI":"10.1093\/cercor\/bhad318","volume":"33","author":"ET Rolls","year":"2023","unstructured":"E.T. Rolls, G. Deco, Y. Zhang, J. Feng, Hierarchical organization of the human ventral visual streams revealed with magnetoencephalography. Cereb. Cortex 33(20), 10686\u201310701 (2023)","journal-title":"Cereb. Cortex"},{"key":"1165_CR26","doi-asserted-by":"publisher","first-page":"611","DOI":"10.1007\/s00429-012-0475-5","volume":"218","author":"RA Adams","year":"2013","unstructured":"R.A. Adams, S. Shipp, K.J. Friston, Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218, 611\u2013643 (2013)","journal-title":"Brain Struct. Funct."},{"issue":"3","key":"1165_CR27","doi-asserted-by":"publisher","first-page":"340","DOI":"10.1038\/nn.4497","volume":"20","author":"M Breakspear","year":"2017","unstructured":"M. Breakspear, Dynamic models of large-scale brain activity. Nat. Neurosci. 20(3), 340\u2013352 (2017)","journal-title":"Nat. Neurosci."},{"issue":"7","key":"1165_CR28","doi-asserted-by":"publisher","first-page":"430","DOI":"10.1038\/nrn3963","volume":"16","author":"G Deco","year":"2015","unstructured":"G. Deco, G. Tononi, M. Boly, M.L. Kringelbach, Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16(7), 430\u2013439 (2015)","journal-title":"Nat. Rev. Neurosci."},{"key":"1165_CR29","unstructured":"V.H.B. Tsukahara, J.N. Oliveira, V.B.O. Barth, J.C. Oliveira, V.R. Cota, C.D. Maciel, Data-driven network dynamical model of rat brain during acute ictogenesis. Front. Neural Circuits (in press)"},{"issue":"2","key":"1165_CR30","doi-asserted-by":"publisher","first-page":"1008689","DOI":"10.1371\/journal.pcbi.1008689","volume":"17","author":"V Sip","year":"2021","unstructured":"V. Sip, M. Hashemi, A.N. Vattikonda, M.M. Woodman, H. Wang, J. Scholly, S. Medina Villalon, M. Guye, F. Bartolomei, V.K. Jirsa, Data-driven method to infer the seizure propagation patterns in an epileptic brain from intracranial electroencephalography. PLoS Comput. Biol. 17(2), 1008689 (2021)","journal-title":"PLoS Comput. Biol."},{"key":"1165_CR31","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2020.104055","volume":"127","author":"RJ Esch","year":"2020","unstructured":"R.J. Esch, S. Shi, A. Bernas, S. Zinger, A.P. Aldenkamp, P.M. Hof, A Bayesian method for inference of effective connectivity in brain networks for detecting the Mozart effect. Comput. Biol. Med. 127, 104055 (2020)","journal-title":"Comput. Biol. Med."},{"issue":"1","key":"1165_CR32","doi-asserted-by":"publisher","first-page":"158","DOI":"10.1162\/neco.2009.11-08-900","volume":"22","author":"S Eldawlatly","year":"2010","unstructured":"S. Eldawlatly, Y. Zhou, R. Jin, K.G. Oweiss, On the use of dynamic Bayesian networks in reconstructing functional neuronal networks from spike train ensembles. Neural Comput. 22(1), 158\u2013189 (2010)","journal-title":"Neural Comput."},{"issue":"2","key":"1165_CR33","doi-asserted-by":"publisher","first-page":"875","DOI":"10.1016\/j.neuroimage.2010.08.063","volume":"54","author":"SM Smith","year":"2011","unstructured":"S.M. Smith, K.L. Miller, G. Salimi-Khorshidi, M. Webster, C.F. Beckmann, T.E. Nichols, J.D. Ramsey, M.W. Woolrich, Network modelling methods for FMRI. Neuroimage 54(2), 875\u2013891 (2011)","journal-title":"Neuroimage"},{"issue":"4","key":"1165_CR34","doi-asserted-by":"publisher","first-page":"0250787","DOI":"10.1371\/journal.pone.0250787","volume":"16","author":"RA De Blasi","year":"2021","unstructured":"R.A. De Blasi, G. Campagna, S. Finazzi, A dynamic Bayesian network model for predicting organ failure associations without predefining outcomes. PLoS ONE 16(4), 0250787 (2021)","journal-title":"PLoS ONE"},{"issue":"7","key":"1165_CR35","doi-asserted-by":"publisher","first-page":"0220065","DOI":"10.1371\/journal.pone.0220065","volume":"14","author":"I Ruiz-P\u00e9rez","year":"2019","unstructured":"I. Ruiz-P\u00e9rez, F. Ayala, J.M. Puerta, J.L. Elvira, M. De Ste Croix, S. Hern\u00e1ndez-S\u00e1nchez, F.J. Vera-Garcia, A Bayesian network approach to study the relationships between several neuromuscular performance measures and dynamic postural control in futsal players. PLoS ONE 14(7), 0220065 (2019)","journal-title":"PLoS ONE"},{"issue":"8","key":"1165_CR36","doi-asserted-by":"publisher","first-page":"1079","DOI":"10.3390\/e24081079","volume":"24","author":"J Mielniczuk","year":"2022","unstructured":"J. Mielniczuk, Information theoretic methods for variable selection\u2014a review. Entropy 24(8), 1079 (2022)","journal-title":"Entropy"},{"key":"1165_CR37","doi-asserted-by":"crossref","unstructured":"B. Akbarian, A. Erfanian, Automatic detection of PTZ-induced seizures based on functional brain connectivity network in rats, in 2017 8th International IEEE\/EMBS Conference on Neural Engineering (NER), pp. 576\u2013579 (2017). IEEE","DOI":"10.1109\/NER.2017.8008417"},{"issue":"12","key":"1165_CR38","doi-asserted-by":"publisher","first-page":"0208423","DOI":"10.1371\/journal.pone.0208423","volume":"13","author":"X Wan","year":"2018","unstructured":"X. Wan, L. Xu, A study for multiscale information transfer measures based on conditional mutual information. PLoS ONE 13(12), 0208423 (2018)","journal-title":"PLoS ONE"},{"key":"1165_CR39","volume-title":"Elements of Information Theory","author":"TM Cover","year":"2012","unstructured":"T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 2012)"},{"issue":"4","key":"1165_CR40","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.72.046217","volume":"72","author":"J Nichols","year":"2005","unstructured":"J. Nichols, M. Seaver, S. Trickey, M. Todd, C. Olson, L. Overbey, Detecting nonlinearity in structural systems using the transfer entropy. Phys. Rev. E 72(4), 046217 (2005)","journal-title":"Phys. Rev. E"},{"issue":"11","key":"1165_CR41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v033.i11","volume":"33","author":"RK Hankin","year":"2010","unstructured":"R.K. Hankin, A generalization of the Dirichlet distribution. J. Stat. Softw. 33(11), 1\u201318 (2010)","journal-title":"J. Stat. Softw."},{"key":"1165_CR42","doi-asserted-by":"crossref","unstructured":"D. Heckerman, Learning Bayesian networks: The combination of knowledge and statisitical data, in Proceedings of Uncertainty in Artificial Intelligence, 1994 (1994)","DOI":"10.1016\/B978-1-55860-332-5.50042-0"},{"issue":"4","key":"1165_CR43","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1007\/BF00994110","volume":"9","author":"GF Cooper","year":"1992","unstructured":"G.F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309\u2013347 (1992)","journal-title":"Mach. Learn."},{"key":"1165_CR44","doi-asserted-by":"crossref","unstructured":"J. Pearl, From Bayesian networks to causal networks, in Mathematical Models for Handling Partial Knowledge in Artificial Intelligence, pp. 157\u2013182 (Springer, 1995)","DOI":"10.1007\/978-1-4899-1424-8_9"},{"key":"1165_CR45","unstructured":"O. Sanchez-Graillet, M. Poesio, Acquiring Bayesian networks from text, in LREC (2004). Citeseer"},{"key":"1165_CR46","doi-asserted-by":"crossref","unstructured":"B.A. Oliveira-Junior, D.B. Marques, M.T. Rossignoli, T. Prizon, J.P. Leite, R.N. Ruggiero, Multidimensional behavioral profiles associated with resilience and susceptibility after inescapable stress. bioRxiv, 2023-11 (2023)","DOI":"10.1101\/2023.11.08.566266"},{"key":"1165_CR47","doi-asserted-by":"crossref","unstructured":"R.N. Ruggiero, D.B. Marques, M.T. Rossignoli, J.B. De\u00a0Ross, T. Prizon, I.J.S. Beraldo, L.S. Bueno-Junior, L. Kandratavicius, J.E. Peixoto-Santos, C.L. Aguiar, et al.: Dysfunctional hippocampal-prefrontal network underlies a multidimensional neuropsychiatric phenotype following early-life seizure. bioRxiv, 2022-12 (2022)","DOI":"10.1101\/2022.12.21.521438"},{"issue":"1","key":"1165_CR48","doi-asserted-by":"publisher","first-page":"438","DOI":"10.3390\/e17010438","volume":"17","author":"D Gencaga","year":"2015","unstructured":"D. Gencaga, K.H. Knuth, W.B. Rossow, A recipe for the estimation of information flow in a dynamical system. Entropy 17(1), 438\u2013470 (2015)","journal-title":"Entropy"},{"issue":"2","key":"1165_CR49","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1007\/s10827-015-0548-6","volume":"38","author":"W Endo","year":"2015","unstructured":"W. Endo, F.P. Santos, D. Simpson, C.D. Maciel, P.L. Newland, Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. J. Comput. Neurosci. 38(2), 427\u2013438 (2015)","journal-title":"J. Comput. Neurosci."},{"key":"1165_CR50","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.neucom.2012.10.035","volume":"123","author":"E Villanueva","year":"2014","unstructured":"E. Villanueva, C.D. Maciel, Efficient methods for learning Bayesian network super-structures. Neurocomputing 123, 3\u201312 (2014)","journal-title":"Neurocomputing"},{"key":"1165_CR51","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.artmed.2018.07.003","volume":"90","author":"TJ Gross","year":"2018","unstructured":"T.J. Gross, R.B. Ara\u00fajo, F.A.C. Vale, M. Bessani, C.D. Maciel, Dependence between cognitive impairment and metabolic syndrome applied to a Brazilian elderly dataset. Artif. Intell. Med. 90, 53\u201360 (2018)","journal-title":"Artif. Intell. Med."},{"key":"1165_CR52","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1016\/j.knosys.2019.03.014","volume":"175","author":"TJ Gross","year":"2019","unstructured":"T.J. Gross, M. Bessani, W.D. Junior, R.B. Araujo, F.A.C. Vale, C.D. Maciel, An analytical threshold for combining Bayesian networks. Knowl. Based Syst. 175, 36\u201349 (2019)","journal-title":"Knowl. Based Syst."},{"key":"1165_CR53","doi-asserted-by":"crossref","unstructured":"F. Liu, Q. Zhu, Max-relevance and min-redundancy greedy Bayesian network learning on high dimensional data, in Third International Conference on Natural Computation (ICNC 2007), vol. 1, pp. 217\u2013221 (2007). IEEE","DOI":"10.1109\/ICNC.2007.467"},{"key":"1165_CR54","doi-asserted-by":"publisher","first-page":"131","DOI":"10.3389\/fncom.2014.00131","volume":"8","author":"C Bielza","year":"2014","unstructured":"C. Bielza, P. Larra\u00f1aga, Bayesian networks in neuroscience: a survey. Front. Comput. Neurosci. 8, 131 (2014). https:\/\/doi.org\/10.3389\/fncom.2014.00131","journal-title":"Front. Comput. Neurosci."},{"key":"1165_CR55","doi-asserted-by":"crossref","unstructured":"Z. Liu, B. Malone, C. Yuan, Empirical evaluation of scoring functions for Bayesian network model selection, in BMC Bioinformatics, vol. 13, pp. 1\u201316 (2012). Springer","DOI":"10.1186\/1471-2105-13-S15-S14"},{"key":"1165_CR56","first-page":"1","volume":"56","author":"E Ak\u00e7a","year":"2020","unstructured":"E. Ak\u00e7a, C. Yozgatl\u0131gil, Mutual information model selection algorithm for time series. J. Appl. Stat. 56, 1\u201316 (2020)","journal-title":"J. Appl. Stat."},{"issue":"2","key":"1165_CR57","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1093\/bib\/bbz016","volume":"21","author":"JJ Dziak","year":"2020","unstructured":"J.J. Dziak, D.L. Coffman, S.T. Lanza, R. Li, L.S. Jermiin, Sensitivity and specificity of information criteria. Brief. Bioinform. 21(2), 553\u2013565 (2020)","journal-title":"Brief. Bioinform."},{"key":"1165_CR58","doi-asserted-by":"crossref","unstructured":"L. Held, D.S. Bov\u00e9, Model selection, in Likelihood and Bayesian Inference, pp. 221\u2013245. Springer (2020)","DOI":"10.1007\/978-3-662-60792-3_7"},{"key":"1165_CR59","first-page":"1","volume":"78","author":"F Fang","year":"2022","unstructured":"F. Fang, C. Yuan, W. Tian, An asymptotic theory for least squares model averaging with nested models. Econometr. Theory 78, 1\u201330 (2022)","journal-title":"Econometr. Theory"},{"issue":"1","key":"1165_CR60","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1744-9081-6-24","volume":"6","author":"W Schultz","year":"2010","unstructured":"W. Schultz, Dopamine signals for reward value and risk: basic and recent data. Behav. Brain Funct. 6(1), 1\u20139 (2010)","journal-title":"Behav. Brain Funct."},{"issue":"12","key":"1165_CR61","doi-asserted-by":"publisher","first-page":"967","DOI":"10.1038\/nrn2022","volume":"7","author":"P Redgrave","year":"2006","unstructured":"P. Redgrave, K. Gurney, The short-latency dopamine signal: a role in discovering novel actions? Nat. Rev. Neurosci. 7(12), 967\u2013975 (2006)","journal-title":"Nat. Rev. Neurosci."},{"issue":"1","key":"1165_CR62","doi-asserted-by":"publisher","first-page":"7","DOI":"10.31887\/DCNS.2016.18.1\/shaber","volume":"18","author":"SN Haber","year":"2016","unstructured":"S.N. Haber, Corticostriatal circuitry. Dialogues Clin. Neurosci. 18(1), 7\u201321 (2016)","journal-title":"Dialogues Clin. Neurosci."},{"issue":"5","key":"1165_CR63","doi-asserted-by":"publisher","first-page":"703","DOI":"10.1016\/j.neuron.2005.05.002","volume":"46","author":"JE Lisman","year":"2005","unstructured":"J.E. Lisman, A.A. Grace, The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5), 703\u2013713 (2005)","journal-title":"Neuron"},{"issue":"16","key":"1165_CR64","doi-asserted-by":"publisher","first-page":"6370","DOI":"10.1523\/JNEUROSCI.21-16-06370.2001","volume":"21","author":"SB Floresco","year":"2001","unstructured":"S.B. Floresco, C.D. Blaha, C.R. Yang, A.G. Phillips, Dopamine d1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J. Neurosci. 21(16), 6370\u20136376 (2001)","journal-title":"J. Neurosci."},{"issue":"3","key":"1165_CR65","doi-asserted-by":"publisher","first-page":"537","DOI":"10.1523\/JNEUROSCI.4032-15.2016","volume":"37","author":"VP Murty","year":"2017","unstructured":"V.P. Murty, A. Tompary, R.A. Adcock, L. Davachi, Selectivity in postencoding connectivity with high-level visual cortex is associated with reward-motivated memory. J. Neurosci. 37(3), 537\u2013545 (2017)","journal-title":"J. Neurosci."},{"issue":"4\u20135","key":"1165_CR66","doi-asserted-by":"publisher","first-page":"513","DOI":"10.1016\/S0031-9384(02)00931-9","volume":"77","author":"SR Sesack","year":"2002","unstructured":"S.R. Sesack, D.B. Carr, Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol. Behav. 77(4\u20135), 513\u2013517 (2002)","journal-title":"Physiol. Behav."},{"key":"1165_CR67","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1007\/s00429-011-0360-7","volume":"217","author":"S Li","year":"2012","unstructured":"S. Li, G.J. Kirouac, Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus. Brain Struct. Funct. 217, 257\u2013273 (2012)","journal-title":"Brain Struct. Funct."},{"issue":"2","key":"1165_CR68","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1002\/cne.10083","volume":"442","author":"RP Vertes","year":"2002","unstructured":"R.P. Vertes, Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J. Comp. Neurol. 442(2), 163\u2013187 (2002)","journal-title":"J. Comp. Neurol."},{"issue":"2","key":"1165_CR69","doi-asserted-by":"publisher","first-page":"366","DOI":"10.1016\/j.neuron.2018.03.024","volume":"98","author":"DP Collins","year":"2018","unstructured":"D.P. Collins, P.G. Anastasiades, J.J. Marlin, A.G. Carter, Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron 98(2), 366\u2013379 (2018)","journal-title":"Neuron"},{"key":"1165_CR70","doi-asserted-by":"publisher","first-page":"40","DOI":"10.3389\/fncir.2018.00040","volume":"12","author":"LS Bueno-Junior","year":"2018","unstructured":"L.S. Bueno-Junior, J.P. Leite, Input convergence, synaptic plasticity and functional coupling across hippocampal-prefrontal-thalamic circuits. Front. Neural Circuits 12, 40 (2018)","journal-title":"Front. Neural Circuits"},{"issue":"1","key":"1165_CR71","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1159\/000327320","volume":"78","author":"L Krubitzer","year":"2011","unstructured":"L. Krubitzer, K.L. Campi, D.F. Cooke, All rodents are not the same: a modern synthesis of cortical organization. Brain Behav. Evol. 78(1), 51\u201393 (2011)","journal-title":"Brain Behav. Evol."}],"container-title":["EURASIP Journal on Advances in Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13634-024-01165-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1186\/s13634-024-01165-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13634-024-01165-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,27]],"date-time":"2024-09-27T10:09:45Z","timestamp":1727431785000},"score":1,"resource":{"primary":{"URL":"https:\/\/asp-eurasipjournals.springeropen.com\/articles\/10.1186\/s13634-024-01165-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,27]]},"references-count":71,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2024,12]]}},"alternative-id":["1165"],"URL":"https:\/\/doi.org\/10.1186\/s13634-024-01165-9","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.3.rs-3997110\/v1","asserted-by":"object"}]},"ISSN":["1687-6180"],"issn-type":[{"type":"electronic","value":"1687-6180"}],"subject":[],"published":{"date-parts":[[2024,9,27]]},"assertion":[{"value":"28 February 2024","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 June 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 September 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The studies involving rats were reviewed and approved by the Ethical Review Board of the University of S\u00e3o Paulo.\u00a0","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval and consent to participate"}},{"value":"The authors declare that the research was conducted without any commercial or financial relationships that could potentially create a conflict of interest.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"87"}}