{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,7,12]],"date-time":"2023-07-12T04:22:38Z","timestamp":1689135758286},"reference-count":49,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,6,24]],"date-time":"2023-06-24T00:00:00Z","timestamp":1687564800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,6,24]],"date-time":"2023-06-24T00:00:00Z","timestamp":1687564800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61901408"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["EURASIP J. Adv. Signal Process."],"abstract":"Abstract<\/jats:title>Automatic modulation classification plays a critical role in the intelligent reception of unknown wireless signals. In practice, the dynamic wireless environment brings a great challenge, and the actual test model is inconsistent with the training model. Therefore, aiming at the problem of noise mismatch, this paper proposes a new modulation classification method based on KD-GoogLeNet and Squeeze-Excitation (KD-GSENet). Using the k<\/jats:italic>-dimensional tree, the complex wireless signals are converted into color images rather than normal constellations, which can enhance the classification features. Considering the attention block has the inherent advantage of assigning more weights to important features, this paper further uses it to improve the GoogLeNet. Finally, extensive experiments are presented including Gaussian noise, non-Gaussian noise, and the scenarios of noise mismatch. Numerical results verify the superior classification performance of the proposed KD-GSENet under different scenarios.<\/jats:p>","DOI":"10.1186\/s13634-023-01036-9","type":"journal-article","created":{"date-parts":[[2023,6,24]],"date-time":"2023-06-24T17:05:37Z","timestamp":1687626337000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Robust automatic modulation classification under noise mismatch"],"prefix":"10.1186","volume":"2023","author":[{"given":"Lan","family":"Guo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7353-6357","authenticated-orcid":false,"given":"Rui","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Cong","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,24]]},"reference":[{"issue":"1","key":"1036_CR1","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1109\/TCCN.2021.3091730","volume":"8","author":"H Zhang","year":"2022","unstructured":"H. Zhang, F. Zhou, Q. Wu, W. Wu, R.Q. Hu, A novel automatic modulation classification scheme based on multi-scale networks. IEEE Trans. Cognit. Commun. Netw. 8(1), 97\u2013110 (2022)","journal-title":"IEEE Trans. Cognit. Commun. Netw."},{"issue":"1","key":"1036_CR2","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1109\/TNNLS.2020.2978386","volume":"32","author":"Z Wu","year":"2021","unstructured":"Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4\u201324 (2021)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"6","key":"1036_CR3","doi-asserted-by":"publisher","first-page":"2178","DOI":"10.1109\/18.720536","volume":"44","author":"SR Kulkarni","year":"1998","unstructured":"S.R. Kulkarni, G. Lugosi, S.S. Venkatesh, Learning pattern classification\u2014a survey. IEEE Trans. Inf. Theory 44(6), 2178\u20132206 (1998)","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"2","key":"1036_CR4","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1049\/iet-com:20050176","volume":"1","author":"OA Dobre","year":"2007","unstructured":"O.A. Dobre, A. Abdi, Y. Bar-Ness, W. Su, Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1(2), 137\u2013156 (2007)","journal-title":"IET Commun."},{"issue":"3","key":"1036_CR5","doi-asserted-by":"publisher","first-page":"3161","DOI":"10.1109\/JSYST.2019.2959045","volume":"14","author":"H Qu","year":"2020","unstructured":"H. Qu, X. Xu, J. Zhao, F. Yan, W. Wang, A robust hyperbolic tangent-based energy detector with gaussian and non-gaussian noise environments in cognitive radio system. IEEE Syst. J. 14(3), 3161\u20133172 (2020)","journal-title":"IEEE Syst. J."},{"issue":"11","key":"1036_CR6","doi-asserted-by":"publisher","first-page":"2417","DOI":"10.1109\/LWC.2021.3102069","volume":"10","author":"H Zhang","year":"2021","unstructured":"H. Zhang, L. Yuan, G. Wu, F. Zhou, Q. Wu, Automatic modulation classification using involution enabled residual networks. IEEE Wirel. Commun. Lett. 10(11), 2417\u20132420 (2021)","journal-title":"IEEE Wirel. Commun. Lett."},{"key":"1036_CR7","doi-asserted-by":"crossref","unstructured":"Xu, J.L., Su, W., Zhou, M.: Likelihood-ratio approaches to automatic modulation classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41(4), 455\u2013469 (2011)","DOI":"10.1109\/TSMCC.2010.2076347"},{"issue":"7","key":"1036_CR8","doi-asserted-by":"publisher","first-page":"6089","DOI":"10.1109\/TVT.2016.2636324","volume":"66","author":"S Huang","year":"2017","unstructured":"S. Huang, Y. Yao, Z. Wei, Z. Feng, P. Zhang, Automatic modulation classification of overlapped sources using multiple cumulants. IEEE Trans. Veh. Technol. 66(7), 6089\u20136101 (2017)","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"1","key":"1036_CR9","doi-asserted-by":"publisher","first-page":"400","DOI":"10.1109\/TWC.2016.2623716","volume":"16","author":"L Han","year":"2017","unstructured":"L. Han, F. Gao, Z. Li, O.A. Dobre, Low complexity automatic modulation classification based on order-statistics. IEEE Trans. Wirel. Commun. 16(1), 400\u2013411 (2017)","journal-title":"IEEE Trans. Wirel. Commun."},{"issue":"2","key":"1036_CR10","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1049\/iet-com:20050176","volume":"1","author":"OA Dobre","year":"2007","unstructured":"O.A. Dobre, A. Abdi, Y. Bar-Ness, W. Su, Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1(2), 137\u2013156 (2007)","journal-title":"IET Commun."},{"issue":"5","key":"1036_CR11","doi-asserted-by":"publisher","first-page":"938","DOI":"10.1109\/LCOMM.2018.2806489","volume":"22","author":"M Abu-Romoh","year":"2018","unstructured":"M. Abu-Romoh, A. Aboutaleb, Z. Rezki, Automatic modulation classification using moments and likelihood maximization. IEEE Commun. Lett. 22(5), 938\u2013941 (2018)","journal-title":"IEEE Commun. Lett."},{"issue":"8","key":"1036_CR12","first-page":"2742","volume":"11","author":"MW Aslam","year":"2012","unstructured":"M.W. Aslam, Z. Zhu, A.K. Nandi, Automatic modulation classification using combination of genetic programming and KNN. IEEE Trans. Wirel. Commun. 11(8), 2742\u20132750 (2012)","journal-title":"IEEE Trans. Wirel. Commun."},{"key":"1036_CR13","doi-asserted-by":"crossref","unstructured":"O\u2019Shea, T.J., Corgan, J., Clancy, T.C.: Convolutional radio modulation recognition networks. In: Engineering Applications of Neural Networks, pp. 213\u2013226 (2016)","DOI":"10.1007\/978-3-319-44188-7_16"},{"issue":"11","key":"1036_CR14","doi-asserted-by":"publisher","first-page":"10760","DOI":"10.1109\/TVT.2018.2868698","volume":"67","author":"F Meng","year":"2018","unstructured":"F. Meng, P. Chen, L. Wu, X. Wang, Automatic modulation classification: a deep learning enabled approach. IEEE Trans. Veh. Technol. 67(11), 10760\u201310772 (2018)","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"3","key":"1036_CR15","doi-asserted-by":"publisher","first-page":"2192","DOI":"10.1109\/JIOT.2021.3091523","volume":"9","author":"S Chang","year":"2022","unstructured":"S. Chang, S. Huang, R. Zhang, Z. Feng, L. Liu, Multitask-learning-based deep neural network for automatic modulation classification. IEEE Internet Things J. 9(3), 2192\u20132206 (2022)","journal-title":"IEEE Internet Things J."},{"issue":"11","key":"1036_CR16","doi-asserted-by":"publisher","first-page":"13521","DOI":"10.1109\/TVT.2020.3030018","volume":"69","author":"Z Zhang","year":"2020","unstructured":"Z. Zhang, H. Luo, C. Wang, C. Gan, Y. Xiang, Automatic modulation classification using CNN-LSTM based dual-stream structure. IEEE Trans. Veh. Technol. 69(11), 13521\u201313531 (2020)","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"4","key":"1036_CR17","doi-asserted-by":"publisher","first-page":"1206","DOI":"10.1109\/LCOMM.2020.3044755","volume":"25","author":"H Zhang","year":"2020","unstructured":"H. Zhang, M. Huang, J. Yang, W. Sun, A data preprocessing method for automatic modulation classification based on CNN. IEEE Commun. Lett. 25(4), 1206\u20131210 (2020)","journal-title":"IEEE Commun. Lett."},{"issue":"3","key":"1036_CR18","doi-asserted-by":"publisher","first-page":"718","DOI":"10.1109\/TNNLS.2018.2850703","volume":"30","author":"S Peng","year":"2019","unstructured":"S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M.M. Sebdani, Y.-D. Yao, Modulation classification based on signal constellation diagrams and deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(3), 718\u2013727 (2019)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"1036_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13634-019-0616-6","volume":"2019","author":"S Zhou","year":"2019","unstructured":"S. Zhou, Z. Yin, Z. Wu, Y. Chen, N. Zhao, Z. Yang, A robust modulation classification method using convolutional neural networks. EURASIP J. Adv. Signal Process. 2019(1), 1\u201315 (2019)","journal-title":"EURASIP J. Adv. Signal Process."},{"issue":"16","key":"1036_CR20","doi-asserted-by":"publisher","first-page":"1275","DOI":"10.1109\/LCOMM.2020.2980840","volume":"24","author":"Y Kumar","year":"2020","unstructured":"Y. Kumar, M. Sheoran, G. Jajoo, S.K. Yadav, Automatic modulation classification based on constellation density using deep learning. IEEE Commun. Lett. 24(16), 1275\u20131278 (2020)","journal-title":"IEEE Commun. Lett."},{"issue":"4","key":"1036_CR21","doi-asserted-by":"publisher","first-page":"1044","DOI":"10.1109\/LWC.2019.2904956","volume":"8","author":"S Huang","year":"2019","unstructured":"S. Huang, Y. Jiang, Y. Gao, Z. Feng, P. Zhang, Automatic modulation classification using contrastive fully convolutional network. IEEE Wirel Commun. Lett. 8(4), 1044\u20131047 (2019)","journal-title":"IEEE Wirel Commun. Lett."},{"issue":"2","key":"1036_CR22","doi-asserted-by":"publisher","first-page":"298","DOI":"10.1109\/LCOMM.2018.2889084","volume":"23","author":"X Yan","year":"2019","unstructured":"X. Yan, G. Zhang, J. Luo, H.C. Wu, Y. Wu, A novel automatic modulation classifier using graph-based constellation analysis for M-ary QAM. IEEE Commun. Lett. 23(2), 298\u2013301 (2019)","journal-title":"IEEE Commun. Lett."},{"issue":"6","key":"1036_CR23","doi-asserted-by":"publisher","first-page":"1204","DOI":"10.1109\/LCOMM.2018.2819991","volume":"22","author":"X Yan","year":"2018","unstructured":"X. Yan, G. Liu, H.C. Wu, G. Feng, New automatic modulation classifier using cyclic-spectrum graphs with optimal training features. IEEE Commun. Lett. 22(6), 1204\u20131207 (2018)","journal-title":"IEEE Commun. Lett."},{"issue":"3","key":"1036_CR24","doi-asserted-by":"publisher","first-page":"929","DOI":"10.1109\/LWC.2019.2900247","volume":"8","author":"Y Zeng","year":"2019","unstructured":"Y. Zeng, M. Zhang, F. Han, Y. Gong, J. Zhang, Spectrum analysis and convolutional neural network for automatic modulation recognition. Wirel. Commun. Lett. IEEE 8(3), 929\u2013932 (2019)","journal-title":"Wirel. Commun. Lett. IEEE"},{"issue":"5","key":"1036_CR25","doi-asserted-by":"publisher","first-page":"1038","DOI":"10.1109\/LCOMM.2020.2970922","volume":"24","author":"AP Hermawan","year":"2020","unstructured":"A.P. Hermawan, R.R. Ginanjar, D.S. Kim, J.M. Lee, CNN-based automatic modulation classification for beyond 5G communications. IEEE Commun. Lett. 24(5), 1038\u20131041 (2020)","journal-title":"IEEE Commun. Lett."},{"issue":"99","key":"1036_CR26","doi-asserted-by":"publisher","first-page":"880","DOI":"10.1109\/LSP.2020.2991875","volume":"27","author":"K Bu","year":"2020","unstructured":"K. Bu, Y. He, X. Jing, J. Han, Adversarial transfer learning for deep learning based automatic modulation classification. IEEE Signal Process. Lett. 27(99), 880\u2013884 (2020)","journal-title":"IEEE Signal Process. Lett."},{"key":"1036_CR27","doi-asserted-by":"crossref","unstructured":"Rajendran, S., Meert, W., Giustiniano, D., Lenders, V., Pollin, S.: Deep learning models for wireless signal classification with distributed low-cost spectrum sensors, in IEEE Transactions on Cognitive Communications and Networking, pp. 433\u2013445 (2018)","DOI":"10.1109\/TCCN.2018.2835460"},{"issue":"4","key":"1036_CR28","doi-asserted-by":"publisher","first-page":"811","DOI":"10.1109\/LCOMM.2020.2968030","volume":"24","author":"T Huynh-The","year":"2020","unstructured":"T. Huynh-The, C.H. Hua, Q.V. Pham, D.S. Kim, MCNet: an efficient CNN architecture for robust automatic modulation classification. IEEE Commun. Lett. 24(4), 811\u2013815 (2020)","journal-title":"IEEE Commun. Lett."},{"issue":"6","key":"1036_CR29","doi-asserted-by":"publisher","first-page":"1243","DOI":"10.1109\/LWC.2022.3162422","volume":"11","author":"T Huynh-The","year":"2022","unstructured":"T. Huynh-The, Q.-V. Pham, T.-V. Nguyen, T.T. Nguyen, DBd. Costa, D.-S. Kim, RanNet: learning residual-attention structure in CNNs for automatic modulation classification. IEEE Wirel. Commun. Lett. 11(6), 1243\u20131247 (2022)","journal-title":"IEEE Wirel. Commun. Lett."},{"issue":"8","key":"1036_CR30","doi-asserted-by":"publisher","first-page":"7795","DOI":"10.1109\/JIOT.2020.2991052","volume":"7","author":"S Huang","year":"2020","unstructured":"S. Huang, R. Dai, J. Huang, Y. Yao, Y. Gao, F. Ning, Z. Feng, Automatic modulation classification using gated recurrent residual network. IEEE Internet Things J. 7(8), 7795\u20137807 (2020)","journal-title":"IEEE Internet Things J."},{"issue":"1","key":"1036_CR31","doi-asserted-by":"publisher","first-page":"168","DOI":"10.1109\/JSTSP.2018.2797022","volume":"12","author":"TJ O\u2019Shea","year":"2017","unstructured":"T.J. O\u2019Shea, T. Roy, T.C. Clancy, Over the air deep learning based radio signal classification. IEEE J. Sel. Topics Signal Process. 12(1), 168\u2013179 (2017)","journal-title":"IEEE J. Sel. Topics Signal Process."},{"issue":"11","key":"1036_CR32","doi-asserted-by":"publisher","first-page":"2417","DOI":"10.1109\/LWC.2021.3102069","volume":"10","author":"H Zhang","year":"2021","unstructured":"H. Zhang, L. Yuan, G. Wu, F. Zhou, Q. Wu, Automatic modulation classification using involution enabled residual networks. IEEE Trans. Wirel. Commun. 10(11), 2417\u20132420 (2021)","journal-title":"IEEE Trans. Wirel. Commun."},{"issue":"10","key":"1036_CR33","doi-asserted-by":"publisher","first-page":"3287","DOI":"10.1109\/LCOMM.2021.3102656","volume":"25","author":"F Zhang","year":"2021","unstructured":"F. Zhang, C. Luo, J. Xu, Y. Luo, An efficient deep learning model for automatic modulation recognition based on parameter estimation and transformation. IEEE Commun. Lett. 25(10), 3287\u20133290 (2021)","journal-title":"IEEE Commun. Lett."},{"issue":"1","key":"1036_CR34","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13638-022-02099-2","volume":"2022","author":"Q Zhou","year":"2022","unstructured":"Q. Zhou, R. Zhang, F. Zhang, X. Jing, An automatic modulation classification network for IoT terminal spectrum monitoring under zero-sample situations. EURASIP J. Wirel. Commun. Netw. 2022(1), 1\u201318 (2022)","journal-title":"EURASIP J. Wirel. Commun. Netw."},{"issue":"2","key":"1036_CR35","doi-asserted-by":"publisher","first-page":"440","DOI":"10.1109\/LWC.2018.2875001","volume":"8","author":"J Ma","year":"2019","unstructured":"J. Ma, T. Qiu, Automatic modulation classification using cyclic correntropy spectrum in impulsive noise. IEEE Wirel. Commun. Lett. 8(2), 440\u2013443 (2019)","journal-title":"IEEE Wirel. Commun. Lett."},{"issue":"11","key":"1036_CR36","doi-asserted-by":"publisher","first-page":"2509","DOI":"10.1109\/LWC.2021.3105978","volume":"10","author":"S Luan","year":"2021","unstructured":"S. Luan, Y. Gao, J. Zhou, Z. Zhang, Automatic modulation classification based on cauchy-score constellation and lightweight network under impulsive noise. IEEE Wirel. Commun. Lett. 10(11), 2509\u20132513 (2021)","journal-title":"IEEE Wirel. Commun. Lett."},{"issue":"7","key":"1036_CR37","doi-asserted-by":"publisher","first-page":"686","DOI":"10.1109\/TCOM.1977.1093891","volume":"25","author":"J Miller","year":"1977","unstructured":"J. Miller, J. Thomas, Robust detectors for signals in non-gaussian noise. IEEE Trans. Commun. 25(7), 686\u2013690 (1977)","journal-title":"IEEE Trans. Commun."},{"key":"1036_CR38","doi-asserted-by":"crossref","unstructured":"Banerjee, S., Agrawal, M.: Underwater acoustic noise with generalized gaussian statistics: effects on error performance. In: 2013 Ocean Electronics (SYMPOL), pp. 1\u20138 (2013)","DOI":"10.1109\/OCEANS-Bergen.2013.6608191"},{"key":"1036_CR39","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026\u20131034 (2015)","DOI":"10.1109\/ICCV.2015.123"},{"issue":"9","key":"1036_CR40","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1145\/361002.361007","volume":"18","author":"JL Bentley","year":"1975","unstructured":"J.L. Bentley, Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509\u2013517 (1975)","journal-title":"Commun. ACM"},{"key":"1036_CR41","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"issue":"8","key":"1036_CR42","doi-asserted-by":"publisher","first-page":"2011","DOI":"10.1109\/TPAMI.2019.2913372","volume":"42","author":"J Hu","year":"2020","unstructured":"J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011\u20132023 (2020)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"8","key":"1036_CR43","first-page":"49","volume":"428","author":"L Chen","year":"2018","unstructured":"L. Chen, M. Zhou, W. Su, M. Wu, J. She, K. Hirota, Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction. Inf. Sci. Int. J. 428(8), 49\u201361 (2018)","journal-title":"Inf. Sci. Int. J."},{"key":"1036_CR44","unstructured":"Kingma, D., Ba, J. Adam: A method for stochastic optimization. Comput. Sci. (2014)"},{"key":"1036_CR45","volume-title":"Digital Communications","author":"JG Proakis","year":"1995","unstructured":"J.G. Proakis, Digital Communications, 3rd edn. (Prentice Hall, Upper Saddle River, 1995)","edition":"3"},{"key":"1036_CR46","volume-title":"Digital Communications, Fundamentals and Applications","author":"B Sklar","year":"1998","unstructured":"B. Sklar, Digital Communications, Fundamentals and Applications (Prentice Hall, Upper Saddle River, 1998)"},{"key":"1036_CR47","volume-title":"Automatic Modulation Classification: Principles, Algorithms and Applications","author":"Z Zhu","year":"2015","unstructured":"Z. Zhu, A.K. Nandi, Automatic Modulation Classification: Principles, Algorithms and Applications (Wiley, Hoboken, 2015)"},{"issue":"6","key":"1036_CR48","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2018","unstructured":"A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84\u201390 (2018)","journal-title":"Commun. ACM"},{"key":"1036_CR49","doi-asserted-by":"crossref","unstructured":"Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.-C., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., Le, Q.: Searching for mobilenetv3. In: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 1314\u20131324 (2019)","DOI":"10.1109\/ICCV.2019.00140"}],"updated-by":[{"updated":{"date-parts":[[2023,7,11]],"date-time":"2023-07-11T00:00:00Z","timestamp":1689033600000},"DOI":"10.1186\/s13634-023-01043-w","type":"correction","label":"Correction"}],"container-title":["EURASIP Journal on Advances in Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13634-023-01036-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1186\/s13634-023-01036-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13634-023-01036-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,11]],"date-time":"2023-07-11T10:10:55Z","timestamp":1689070255000},"score":1,"resource":{"primary":{"URL":"https:\/\/asp-eurasipjournals.springeropen.com\/articles\/10.1186\/s13634-023-01036-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,24]]},"references-count":49,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["1036"],"URL":"https:\/\/doi.org\/10.1186\/s13634-023-01036-9","relation":{},"ISSN":["1687-6180"],"issn-type":[{"value":"1687-6180","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,6,24]]},"assertion":[{"value":"9 December 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 June 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"24 June 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 July 2023","order":4,"name":"change_date","label":"Change Date","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Correction","order":5,"name":"change_type","label":"Change Type","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"A Correction to this paper has been published:","order":6,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"https:\/\/doi.org\/10.1186\/s13634-023-01043-w","URL":"https:\/\/doi.org\/10.1186\/s13634-023-01043-w","order":7,"name":"change_details","label":"Change Details","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"73"}}