{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T22:55:35Z","timestamp":1726181735773},"reference-count":61,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,5,7]],"date-time":"2023-05-07T00:00:00Z","timestamp":1683417600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,5,7]],"date-time":"2023-05-07T00:00:00Z","timestamp":1683417600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100020639","name":"Bayerische Staatsministerium f\u00fcr Wirtschaft, Landesentwicklung und Energie","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100020639","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Fraunhofer-Institut f\u00fcr Verfahrenstechnik und Verpackung IVV"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Cheminform"],"abstract":"Abstract<\/jats:title>We derived and implemented a linear classification algorithm for the prediction of a molecule\u2019s odor, called Olfactory Weighted Sum (OWSum). Our approach relies solely on structural patterns of the molecules as features for algorithmic treatment and uses conditional probabilities combined with tf-idf\u00a0values. In addition to the prediction of molecular odor, OWSum provides insights into properties of the dataset and allows to understand how algorithmic classifications are reached by quantitatively assigning structural patterns to odors. This provides chemists with an intuitive understanding of underlying interactions. To deal with ambiguities of the natural language used to describe odor, we introduced descriptor overlap as a metric for the quantification of semantic overlap between descriptors. Thus, grouping of descriptors and derivation of higher-level descriptors becomes possible. Our approach poses a large leap forward in our capabilities to understand and predict molecular features.<\/jats:p>","DOI":"10.1186\/s13321-023-00722-y","type":"journal-article","created":{"date-parts":[[2023,5,7]],"date-time":"2023-05-07T08:01:28Z","timestamp":1683446488000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["OWSum: algorithmic odor prediction and insight into structure-odor\u00a0relationships"],"prefix":"10.1186","volume":"15","author":[{"given":"Doris","family":"Schicker","sequence":"first","affiliation":[]},{"given":"Satnam","family":"Singh","sequence":"additional","affiliation":[]},{"given":"Jessica","family":"Freiherr","sequence":"additional","affiliation":[]},{"given":"Andreas T.","family":"Grasskamp","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,7]]},"reference":[{"key":"722_CR1","doi-asserted-by":"publisher","first-page":"989","DOI":"10.1016\/S0140-6736(94)91645-4","volume":"344","author":"H Varendi","year":"1994","unstructured":"Varendi H, Porter RH, Winberg J (1994) Does the newborn baby find the nipple by smell? The Lancet 344:989\u2013990. https:\/\/doi.org\/10.1016\/S0140-6736(94)91645-4","journal-title":"The Lancet"},{"key":"722_CR2","doi-asserted-by":"publisher","first-page":"497","DOI":"10.1016\/j.psyneuen.2008.10.007","volume":"34","author":"J Havlicek","year":"2009","unstructured":"Havlicek J, Roberts SC (2009) MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology 34:497\u2013512. https:\/\/doi.org\/10.1016\/j.psyneuen.2008.10.007","journal-title":"Psychoneuroendocrinology"},{"key":"722_CR3","doi-asserted-by":"publisher","first-page":"103959","DOI":"10.1016\/j.foodqual.2020.103959","volume":"85","author":"P Morquecho-Campos","year":"2020","unstructured":"Morquecho-Campos P, de Graaf K, Boesveldt S (2020) Smelling our appetite? The influence of food odors on congruent appetite, food preferences and intake. Food Qual Prefer 85:103959. https:\/\/doi.org\/10.1016\/j.foodqual.2020.103959","journal-title":"Food Qual Prefer"},{"key":"722_CR4","doi-asserted-by":"publisher","first-page":"1151","DOI":"10.3389\/fphys.2019.01151","volume":"10","author":"LG Fine","year":"2019","unstructured":"Fine LG, Riera CE (2019) Sense of Smell as the Central Driver of Pavlovian Appetite Behavior in Mammals. Front Physiol 10:1151. https:\/\/doi.org\/10.3389\/fphys.2019.01151","journal-title":"Front Physiol"},{"key":"722_CR5","doi-asserted-by":"publisher","first-page":"255","DOI":"10.3389\/fnins.2020.00255","volume":"14","author":"JE Taylor","year":"2020","unstructured":"Taylor JE, Lau H, Seymour B et al (2020) An evolutionarily threat-relevant odor strengthens human fear memory. Front Neurosci 14:255. https:\/\/doi.org\/10.3389\/fnins.2020.00255","journal-title":"Front Neurosci"},{"key":"722_CR6","doi-asserted-by":"publisher","first-page":"266","DOI":"10.1016\/j.cognition.2013.11.004","volume":"130","author":"A Majid","year":"2014","unstructured":"Majid A, Burenhult N (2014) Odors are expressible in language, as long as you speak the right language. Cognition 130:266\u2013270. https:\/\/doi.org\/10.1016\/j.cognition.2013.11.004","journal-title":"Cognition"},{"key":"722_CR7","doi-asserted-by":"publisher","first-page":"189","DOI":"10.1093\/chemse\/bjs141","volume":"38","author":"K Kaeppler","year":"2013","unstructured":"Kaeppler K, Mueller F (2013) Odor classification: a review of factors influencing perception-based odor arrangements. Chem Senses 38:189\u2013209. https:\/\/doi.org\/10.1093\/chemse\/bjs141","journal-title":"Chem Senses"},{"key":"722_CR8","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1111\/j.1745-459X.1997.tb00067.x","volume":"12","author":"R Gawel","year":"1997","unstructured":"Gawel R (1997) The use of language by trained and untrained expereinced wine tasters. J Sensory Studies 12:267\u2013284. https:\/\/doi.org\/10.1111\/j.1745-459X.1997.tb00067.x","journal-title":"J Sensory Studies"},{"key":"722_CR9","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1111\/j.1365-2621.1984.tb13686.x","volume":"49","author":"HT Lawless","year":"1984","unstructured":"Lawless HT (1984) Flavor Description of White Wine by \u201cExpert\u201d and Nonexpert Wine Consumers. J Food Science 49:120\u2013123. https:\/\/doi.org\/10.1111\/j.1365-2621.1984.tb13686.x","journal-title":"J Food Science"},{"key":"722_CR10","doi-asserted-by":"publisher","first-page":"820","DOI":"10.1126\/science.aal2014","volume":"355","author":"A Keller","year":"2017","unstructured":"Keller A, Gerkin RC, Guan Y et al (2017) Predicting human olfactory perception from chemical features of odor molecules. Science 355:820\u2013826. https:\/\/doi.org\/10.1126\/science.aal2014","journal-title":"Science"},{"key":"722_CR11","doi-asserted-by":"publisher","DOI":"10.1093\/gigascience\/gix127","author":"H Li","year":"2018","unstructured":"Li H, Panwar B, Omenn GS et al (2018) Accurate prediction of personalized olfactory perception from large-scale chemoinformatic features. Gigascience. https:\/\/doi.org\/10.1093\/gigascience\/gix127","journal-title":"Gigascience"},{"key":"722_CR12","doi-asserted-by":"publisher","first-page":"11999","DOI":"10.1021\/acs.analchem.7b02389","volume":"89","author":"L Shang","year":"2017","unstructured":"Shang L, Liu C, Tomiura Y et al (2017) Machine-learning-based olfactometer: prediction of odor perception from physicochemical features of odorant molecules. Anal Chem 89:11999\u201312005. https:\/\/doi.org\/10.1021\/acs.analchem.7b02389","journal-title":"Anal Chem"},{"key":"722_CR13","doi-asserted-by":"publisher","first-page":"e1003184","DOI":"10.1371\/journal.pcbi.1003184","volume":"9","author":"K Snitz","year":"2013","unstructured":"Snitz K, Yablonka A, Weiss T et al (2013) Predicting odor perceptual similarity from odor structure. PLoS Comput Biol 9:e1003184. https:\/\/doi.org\/10.1371\/journal.pcbi.1003184","journal-title":"PLoS Comput Biol"},{"key":"722_CR14","doi-asserted-by":"crossref","unstructured":"Tran N, Kepple D, Shuvaev SA et al. (2018) DeepNose: Using artificial neural networks to represent the space of odorants","DOI":"10.1101\/464735"},{"key":"722_CR15","doi-asserted-by":"publisher","first-page":"giaa011","DOI":"10.1093\/gigascience\/giaa011","volume":"9","author":"X Zhang","year":"2020","unstructured":"Zhang X, Zhang K, Lin D et al (2020) Artificial intelligence deciphers codes for color and odor perceptions based on large-scale chemoinformatic data. Gigascience 9:giaa011. https:\/\/doi.org\/10.1093\/gigascience\/giaa011","journal-title":"Gigascience"},{"key":"722_CR16","doi-asserted-by":"publisher","first-page":"676","DOI":"10.1021\/acs.jcim.0c01288","volume":"61","author":"A Sharma","year":"2021","unstructured":"Sharma A, Kumar R, Ranjta S et al (2021) SMILES to smell: decoding the structure-odor relationship of chemical compounds using the deep neural network approach. J Chem Inf Model 61:676\u2013688. https:\/\/doi.org\/10.1021\/acs.jcim.0c01288","journal-title":"J Chem Inf Model"},{"key":"722_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-020-73978-1","volume":"10","author":"R Chacko","year":"2020","unstructured":"Chacko R, Jain D, Patwardhan M et al (2020) Data based predictive models for odor perception. Sci Rep 10:1\u201313","journal-title":"Sci Rep"},{"key":"722_CR18","doi-asserted-by":"publisher","first-page":"2033","DOI":"10.3390\/foods11142033","volume":"11","author":"W Bo","year":"2022","unstructured":"Bo W, Yu Y, He R et al (2022) Insight into the structure-odor relationship of molecules: a computational study based on deep learning. Foods 11:2033","journal-title":"Foods"},{"key":"722_CR19","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1021\/ci950154b","volume":"36","author":"M Chastrette","year":"1996","unstructured":"Chastrette M, Cretin D, A\u00efdi E (1996) Structure\u2212 Odor relationships: using neural networks in the estimation of camphoraceous or fruity odors and olfactory thresholds of aliphatic alcohols. J Chem Inf Comput Sci 36:108\u2013113","journal-title":"J Chem Inf Comput Sci"},{"key":"722_CR20","unstructured":"Marquardt W, Pantelides C (2006) 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering. Elsevier"},{"key":"722_CR21","doi-asserted-by":"publisher","first-page":"6254","DOI":"10.1002\/anie.200600782","volume":"45","author":"CS Sell","year":"2006","unstructured":"Sell CS (2006) On the unpredictability of odor. Angew Chem Int Ed Engl 45:6254\u20136261. https:\/\/doi.org\/10.1002\/anie.200600782","journal-title":"Angew Chem Int Ed Engl"},{"key":"722_CR22","doi-asserted-by":"publisher","first-page":"6254","DOI":"10.3390\/ijms20123018","volume":"20","author":"M Genva","year":"2019","unstructured":"Genva M, Kenne Kemene T, Deleu M et al (2019) Is it possible to predict the odor of a molecule on the basis of its structure? Int J Mol Sci 20:6254. https:\/\/doi.org\/10.3390\/ijms20123018","journal-title":"Int J Mol Sci"},{"key":"722_CR23","doi-asserted-by":"publisher","first-page":"3201","DOI":"10.1021\/cr950068a","volume":"96","author":"KJ Rossiter","year":"1996","unstructured":"Rossiter KJ (1996) Structure-odor relationships. Chem Rev 96:3201\u20133240. https:\/\/doi.org\/10.1021\/cr950068a","journal-title":"Chem Rev"},{"key":"722_CR24","doi-asserted-by":"publisher","first-page":"e1006945","DOI":"10.1371\/journal.pcbi.1006945","volume":"15","author":"CC Licon","year":"2019","unstructured":"Licon CC, Bosc G, Sabri M et al (2019) Chemical features mining provides new descriptive structure-odor relationships. PLoS Comput Biol 15:e1006945. https:\/\/doi.org\/10.1371\/journal.pcbi.1006945","journal-title":"PLoS Comput Biol"},{"key":"722_CR25","doi-asserted-by":"crossref","unstructured":"Mourad Korichi, Vincent Gerbaud, Pascal Floquet et al. (2006) Quantitative structure\u2014Odor relationship: Using of multidimensional data analysis and neural network approaches. In: W. Marquardt, C. Pantelides (eds) 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, vol 21. Elsevier, pp\u00a0895\u2013900","DOI":"10.1016\/S1570-7946(06)80159-8"},{"key":"722_CR26","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1186\/s13321-022-00671-y","volume":"14","author":"X Zheng","year":"2022","unstructured":"Zheng X, Tomiura Y, Hayashi K (2022) Investigation of the structure-odor relationship using a transformer model. J Cheminform 14:88. https:\/\/doi.org\/10.1186\/s13321-022-00671-y","journal-title":"J Cheminform"},{"key":"722_CR27","doi-asserted-by":"publisher","first-page":"e2116576119","DOI":"10.1073\/pnas.2116576119","volume":"119","author":"EJ Mayhew","year":"2022","unstructured":"Mayhew EJ, Arayata CJ, Gerkin RC et al (2022) Transport features predict if a molecule is odorous. Proc Natl Acad Sci U S A 119:e2116576119. https:\/\/doi.org\/10.1073\/pnas.2116576119","journal-title":"Proc Natl Acad Sci U S A"},{"key":"722_CR28","doi-asserted-by":"publisher","first-page":"e0141263","DOI":"10.1371\/journal.pone.0141263","volume":"10","author":"R Kumar","year":"2015","unstructured":"Kumar R, Kaur R, Auffarth B et al (2015) Understanding the odour spaces: a step towards solving olfactory stimulus-percept problem. PLoS One. 10:e0141263. https:\/\/doi.org\/10.1371\/journal.pone.0141263","journal-title":"PLoS One."},{"key":"722_CR29","doi-asserted-by":"publisher","first-page":"65","DOI":"10.3389\/fnsys.2011.00065","volume":"5","author":"AA Koulakov","year":"2011","unstructured":"Koulakov AA, Kolterman BE, Enikolopov AG et al (2011) In search of the structure of human olfactory space. Front Syst Neurosci 5:65. https:\/\/doi.org\/10.3389\/fnsys.2011.00065","journal-title":"Front Syst Neurosci"},{"key":"722_CR30","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1111\/j.1745-459X.2008.00160.x","volume":"23","author":"M ZARZO","year":"2008","unstructured":"ZARZO M (2008) Psychologic dimensions in the perception of everyday odors: pleasantness and edibility. J Sensory Stud 23:354\u2013376. https:\/\/doi.org\/10.1111\/j.1745-459X.2008.00160.x","journal-title":"J Sensory Stud"},{"key":"722_CR31","doi-asserted-by":"publisher","first-page":"10015","DOI":"10.1523\/JNEUROSCI.1158-07.2007","volume":"27","author":"RM Khan","year":"2007","unstructured":"Khan RM, Luk C-H, Flinker A et al (2007) Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J Neurosci 27:10015\u201310023. https:\/\/doi.org\/10.1523\/JNEUROSCI.1158-07.2007","journal-title":"J Neurosci"},{"key":"722_CR32","doi-asserted-by":"publisher","first-page":"e1000740","DOI":"10.1371\/journal.pcbi.1000740","volume":"6","author":"R Haddad","year":"2010","unstructured":"Haddad R, Medhanie A, Roth Y et al (2010) Predicting odor pleasantness with an electronic nose. PLoS Comput Biol 6:e1000740. https:\/\/doi.org\/10.1371\/journal.pcbi.1000740","journal-title":"PLoS Comput Biol"},{"key":"722_CR33","doi-asserted-by":"publisher","first-page":"599","DOI":"10.1093\/chemse\/bjn026","volume":"33","author":"H Lapid","year":"2008","unstructured":"Lapid H, Harel D, Sobel N (2008) Prediction models for the pleasantness of binary mixtures in olfaction. Chem Senses 33:599\u2013609. https:\/\/doi.org\/10.1093\/chemse\/bjn026","journal-title":"Chem Senses"},{"key":"722_CR34","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1093\/chemse\/bjaa020","volume":"45","author":"Y Ma","year":"2020","unstructured":"Ma Y, Tang K, Thomas-Danguin T et al (2020) Pleasantness of binary odor mixtures: rules and prediction. Chem Senses 45:303\u2013311","journal-title":"Chem Senses"},{"key":"722_CR35","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1093\/chemse\/bjy067","volume":"44","author":"J L\u00f6tsch","year":"2019","unstructured":"L\u00f6tsch J, Kringel D, Hummel T (2019) Machine learning in human olfactory research. Chem Senses 44:11\u201322. https:\/\/doi.org\/10.1093\/chemse\/bjy067","journal-title":"Chem Senses"},{"key":"722_CR36","doi-asserted-by":"publisher","first-page":"11337","DOI":"10.1109\/JSEN.2019.2933692","volume":"19","author":"D Wu","year":"2019","unstructured":"Wu D, Luo D, Wong K-Y et al (2019) POP-CNN: predicting odor pleasantness with convolutional neural network. IEEE Sensors J 19:11337\u201311345. https:\/\/doi.org\/10.1109\/JSEN.2019.2933692","journal-title":"IEEE Sensors J"},{"key":"722_CR37","doi-asserted-by":"publisher","first-page":"15012","DOI":"10.1109\/JSEN.2021.3074173","volume":"21","author":"J Guo","year":"2021","unstructured":"Guo J, Cheng Y, Luo D et al (2021) ODRP: a deep learning framework for odor descriptor rating prediction using electronic nose. IEEE Sensors J 21:15012\u201315021. https:\/\/doi.org\/10.1109\/JSEN.2021.3074173","journal-title":"IEEE Sensors J"},{"key":"722_CR38","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1016\/j.compag.2019.01.037","volume":"157","author":"F Chang","year":"2019","unstructured":"Chang F, Heinemann PH (2019) Prediction of human assessments of dairy odor utilizing a fast gas chromatograph and neural networks. Comput Electron Agric 157:541\u2013548. https:\/\/doi.org\/10.1016\/j.compag.2019.01.037","journal-title":"Comput Electron Agric"},{"key":"722_CR39","doi-asserted-by":"publisher","first-page":"e0157030","DOI":"10.1371\/journal.pone.0157030","volume":"11","author":"Y Nozaki","year":"2016","unstructured":"Nozaki Y, Nakamoto T (2016) Odor impression prediction from mass spectra. PLoS One 11:e0157030. https:\/\/doi.org\/10.1371\/journal.pone.0157030","journal-title":"PLoS One"},{"key":"722_CR40","doi-asserted-by":"publisher","first-page":"e0234688","DOI":"10.1371\/journal.pone.0234688","volume":"15","author":"T Debnath","year":"2020","unstructured":"Debnath T, Nakamoto T (2020) Predicting human odor perception represented by continuous values from mass spectra of essential oils resembling chemical mixtures. PLoS One 15:e0234688. https:\/\/doi.org\/10.1371\/journal.pone.0234688","journal-title":"PLoS One"},{"key":"722_CR41","doi-asserted-by":"publisher","first-page":"13863","DOI":"10.1038\/s41598-022-18086-y","volume":"12","author":"K Saini","year":"2022","unstructured":"Saini K, Ramanathan V (2022) Predicting odor from molecular structure: a multi-label classification approach. Sci Rep 12:13863. https:\/\/doi.org\/10.1038\/s41598-022-18086-y","journal-title":"Sci Rep"},{"key":"722_CR42","doi-asserted-by":"publisher","first-page":"1466","DOI":"10.1002\/jcc.21707","volume":"32","author":"CW Yap","year":"2011","unstructured":"Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466\u20131474. https:\/\/doi.org\/10.1002\/jcc.21707","journal-title":"J Comput Chem"},{"key":"722_CR43","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1186\/s13321-018-0258-y","volume":"10","author":"H Moriwaki","year":"2018","unstructured":"Moriwaki H, Tian Y-S, Kawashita N et al (2018) Mordred: a molecular descriptor calculator. J Cheminform 10:4. https:\/\/doi.org\/10.1186\/s13321-018-0258-y","journal-title":"J Cheminform"},{"key":"722_CR44","doi-asserted-by":"publisher","unstructured":"Liu C, Shang L, Hayashi K (2019) Co-occurrence-based clustering of odor descriptors for predicting structure-odor relationship, 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan 2019:1\u20134. https:\/\/doi.org\/10.1109\/ISOEN.2019.8823446","DOI":"10.1109\/ISOEN.2019.8823446"},{"key":"722_CR45","doi-asserted-by":"publisher","first-page":"4979","DOI":"10.1038\/s41467-018-07439-9","volume":"9","author":"ED Guti\u00e9rrez","year":"2018","unstructured":"Guti\u00e9rrez ED, Dhurandhar A, Keller A et al (2018) Predicting natural language descriptions of mono-molecular odorants. Nat Commun 9:4979. https:\/\/doi.org\/10.1038\/s41467-018-07439-9","journal-title":"Nat Commun"},{"key":"722_CR46","doi-asserted-by":"publisher","first-page":"12070","DOI":"10.1038\/s41598-021-91210-6","volume":"11","author":"H Xu","year":"2021","unstructured":"Xu H, Kitai K, Minami K et al (2021) Determination of quasi-primary odors by endpoint detection. Sci Rep 11:12070. https:\/\/doi.org\/10.1038\/s41598-021-91210-6","journal-title":"Sci Rep"},{"key":"722_CR47","first-page":"199","volume":"2","author":"A Quinn","year":"2008","unstructured":"Quinn A, Stranieri A, Yearwood J et al (2008) AWSum-combining classification with knowledge aquisition. Int J Softw Inform 2:199\u2013214","journal-title":"Int J Softw Inform"},{"key":"722_CR48","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1016\/0092-8674(91)90418-X","volume":"65","author":"L Buck","year":"1991","unstructured":"Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175\u2013187. https:\/\/doi.org\/10.1016\/0092-8674(91)90418-X","journal-title":"Cell"},{"key":"722_CR49","doi-asserted-by":"publisher","first-page":"713","DOI":"10.1016\/S0092-8674(00)80581-4","volume":"96","author":"B Malnic","year":"1999","unstructured":"Malnic B, Hirono J, Sato T et al (1999) Combinatorial receptor codes for odors. Cell 96:713\u2013723. https:\/\/doi.org\/10.1016\/S0092-8674(00)80581-4","journal-title":"Cell"},{"key":"722_CR50","volume-title":"Atlas of odor character profiles, Online-Ausg. ASTM data series, DS61","author":"A Dravnieks","year":"1985","unstructured":"Dravnieks A (1985) Atlas of odor character profiles, Online-Ausg. ASTM data series, DS61. American Society for Testing and Materials, Philadelphia"},{"key":"722_CR51","doi-asserted-by":"publisher","first-page":"752","DOI":"10.1080\/00022470.1984.10465810","volume":"34","author":"A Dravnieks","year":"1984","unstructured":"Dravnieks A, Masurat T, Lamm RA (1984) Hedonics of odors and odor descriptors. J Air Pollut Control Assoc 34:752\u2013755. https:\/\/doi.org\/10.1080\/00022470.1984.10465810","journal-title":"J Air Pollut Control Assoc"},{"key":"722_CR52","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/j.cognition.2018.05.007","volume":"178","author":"G Iatropoulos","year":"2018","unstructured":"Iatropoulos G, Herman P, Lansner A et al (2018) The language of smell: connecting linguistic and psychophysical properties of odor descriptors. Cognition 178:37\u201349. https:\/\/doi.org\/10.1016\/j.cognition.2018.05.007","journal-title":"Cognition"},{"key":"722_CR53","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1186\/s12868-016-0287-2","volume":"17","author":"A Keller","year":"2016","unstructured":"Keller A, Vosshall LB (2016) Olfactory perception of chemically diverse molecules. BMC Neurosci 17:55. https:\/\/doi.org\/10.1186\/s12868-016-0287-2","journal-title":"BMC Neurosci"},{"key":"722_CR54","doi-asserted-by":"publisher","first-page":"413","DOI":"10.4304\/jsw.6.3.413-420","volume":"6","author":"T Xia","year":"2011","unstructured":"Xia T, Chai Y (2011) An improvement to TF-IDF: term distribution based term weight algorithm. JSW 6:413. https:\/\/doi.org\/10.4304\/jsw.6.3.413-420","journal-title":"JSW"},{"key":"722_CR55","doi-asserted-by":"publisher","unstructured":"Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21:6. https:\/\/doi.org\/10.1186\/s12864-019-6413-7","DOI":"10.1186\/s12864-019-6413-7"},{"key":"722_CR56","unstructured":"Daylight Chemical Information Systems, Inc. Daylight Theory Manual. https:\/\/www.daylight.com\/dayhtml\/doc\/theory\/theory.smiles.html. Accessed 15 Jun 2022"},{"key":"722_CR57","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1021\/ci00057a005","volume":"28","author":"D Weininger","year":"1988","unstructured":"Weininger D (1988) SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules. J Chem Inf Model 28:31\u201336. https:\/\/doi.org\/10.1021\/ci00057a005","journal-title":"J Chem Inf Model"},{"key":"722_CR58","unstructured":"Daylight Chemical Information Systems, Inc. Daylight Theory Manual. https:\/\/www.daylight.com\/dayhtml\/doc\/theory\/theory.smarts.html. Accessed 15 Jun 2022"},{"key":"722_CR59","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1021\/ci049714","volume":"45","author":"JJ Irwin","year":"2005","unstructured":"Irwin JJ, Shoichet BK (2005) ZINC\u2013a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177\u2013182. https:\/\/doi.org\/10.1021\/ci049714","journal-title":"J Chem Inf Model"},{"key":"722_CR60","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825\u20132830","journal-title":"J Mach Learn Res"},{"key":"722_CR61","unstructured":"Szyma\u0144ski P, Kajdanowicz T (2017) A scikit-based Python environment for performing multi-label classification. ArXiv e-prints"}],"container-title":["Journal of Cheminformatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13321-023-00722-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1186\/s13321-023-00722-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13321-023-00722-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,7]],"date-time":"2023-05-07T08:01:36Z","timestamp":1683446496000},"score":1,"resource":{"primary":{"URL":"https:\/\/jcheminf.biomedcentral.com\/articles\/10.1186\/s13321-023-00722-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,7]]},"references-count":61,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["722"],"URL":"https:\/\/doi.org\/10.1186\/s13321-023-00722-y","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.3.rs-1956083\/v1","asserted-by":"object"}]},"ISSN":["1758-2946"],"issn-type":[{"value":"1758-2946","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,5,7]]},"assertion":[{"value":"12 August 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 April 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 May 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"51"}}