{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T12:10:15Z","timestamp":1742645415895,"version":"3.37.3"},"reference-count":95,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,3,2]],"date-time":"2023-03-02T00:00:00Z","timestamp":1677715200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,3,2]],"date-time":"2023-03-02T00:00:00Z","timestamp":1677715200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Cheminform"],"abstract":"Abstract<\/jats:title>Protein mutations, especially those which occur in the binding site, play an important role in inter-individual drug response and may alter binding affinity and thus impact the drug\u2019s efficacy and side effects. Unfortunately, large-scale experimental screening of ligand-binding against protein variants is still time-consuming and expensive. Alternatively, in silico approaches can play a role in guiding those experiments. Methods ranging from computationally cheaper machine learning (ML) to the more expensive molecular dynamics have been applied to accurately predict the mutation effects. However, these effects have been mostly studied on limited and small datasets, while ideally a large dataset of binding affinity changes due to binding site mutations is needed. In this work, we used the PSnpBind database with six hundred thousand docking experiments to train a machine learning model predicting protein-ligand binding affinity for both wild-type proteins and their variants with a single-point mutation in the binding site. A numerical representation of the protein, binding site, mutation, and ligand information was encoded using 256 features, half of them were manually selected based on domain knowledge. A machine learning approach composed of two regression models is proposed, the first predicting wild-type protein-ligand binding affinity while the second predicting the mutated protein-ligand binding affinity. The best performing models reported an RMSE value within 0.5\u00a0$$-$$<\/jats:tex-math>\n -<\/mml:mo>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula>\u00a00.6\u00a0kcal\/mol-1<\/jats:sup> on an independent test set with an R2<\/jats:sup> value of 0.87\u00a0$$-$$<\/jats:tex-math>\n -<\/mml:mo>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula>\u00a00.90. We report an improvement in the prediction performance compared to several reported models developed for protein-ligand binding affinity prediction. The obtained models can be used as a complementary method in early-stage drug discovery. They can be applied to rapidly obtain a better overview of the ligand binding affinity changes across protein variants carried by people in the population and narrow down the search space where more time-demanding methods can be used to identify potential leads that achieve a better affinity for all protein variants.<\/jats:p>","DOI":"10.1186\/s13321-023-00701-3","type":"journal-article","created":{"date-parts":[[2023,3,2]],"date-time":"2023-03-02T17:02:59Z","timestamp":1677776579000},"update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity"],"prefix":"10.1186","volume":"15","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8399-8990","authenticated-orcid":false,"given":"Ammar","family":"Ammar","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3796-1687","authenticated-orcid":false,"given":"Rachel","family":"Cavill","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5301-3142","authenticated-orcid":false,"given":"Chris","family":"Evelo","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7542-0286","authenticated-orcid":false,"given":"Egon","family":"Willighagen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,2]]},"reference":[{"key":"701_CR1","doi-asserted-by":"publisher","DOI":"10.3346\/jkms.2018.33.e213","author":"H-S Kim","year":"2018","unstructured":"Kim H-S, Lee S, Kim JH (2018) Real-world evidence versus randomized controlled trial: clinical research based on electronic medical records. J Korean Med Sci. https:\/\/doi.org\/10.3346\/jkms.2018.33.e213","journal-title":"J Korean Med Sci"},{"issue":"72","key":"701_CR2","doi-asserted-by":"publisher","first-page":"1409","DOI":"10.1098\/rsif.2011.0843","volume":"9","author":"JL Lahti","year":"2012","unstructured":"Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB (2012) Bioinformatics and variability in drug response: a protein structural perspective. J R Soc Interface 9(72):1409\u20131437. https:\/\/doi.org\/10.1098\/rsif.2011.0843","journal-title":"J R Soc Interface"},{"key":"701_CR3","doi-asserted-by":"publisher","DOI":"10.1001\/jama.2011.998","author":"RA Wilke","year":"2011","unstructured":"Wilke RA, Dolan ME (2011) Genetics and variable drug response. JAMA. https:\/\/doi.org\/10.1001\/jama.2011.998","journal-title":"JAMA"},{"issue":"Suppl\u20132","key":"701_CR4","doi-asserted-by":"publisher","first-page":"207","DOI":"10.1093\/hmg\/ddi261","volume":"14","author":"W Sad\u00e9e","year":"2005","unstructured":"Sad\u00e9e W, Dai Z (2005) Pharmacogenetics\/genomics and personalized medicine. Hum Mol Genet 14(Suppl\u20132):207\u2013214. https:\/\/doi.org\/10.1093\/hmg\/ddi261","journal-title":"Hum Mol Genet"},{"issue":"3","key":"701_CR5","doi-asserted-by":"publisher","first-page":"435","DOI":"10.1042\/bj20100522","volume":"429","author":"AK Daly","year":"2010","unstructured":"Daly AK (2010) Pharmacogenetics and human genetic polymorphisms. Biochem J 429(3):435\u2013449. https:\/\/doi.org\/10.1042\/bj20100522","journal-title":"Biochem J"},{"key":"701_CR6","doi-asserted-by":"publisher","DOI":"10.1186\/s13073-017-0502-5","author":"CPI Sch\u00e4rfe","year":"2017","unstructured":"Sch\u00e4rfe CPI, Tremmel R, Schwab M, Kohlbacher O, Marks DS (2017) Genetic variation in human drug-related genes. Genome Med. https:\/\/doi.org\/10.1186\/s13073-017-0502-5","journal-title":"Genome Med"},{"issue":"6","key":"701_CR7","doi-asserted-by":"publisher","first-page":"1383","DOI":"10.1002\/cpt.1751","volume":"107","author":"AS Etheridge","year":"2020","unstructured":"Etheridge AS, Gallins PJ, Jima D, Broadaway KA, Ratain MJ, Schuetz E, Schadt E, Schroder A, Molony C, Zhou Y, Mohlke KL, Wright FA, Innocenti F (2020) A new liver expression quantitative trait locus map from 1, 183 individuals provides evidence for novel expression quantitative trait loci of drug response, metabolic, and sex-biased phenotypes. Clin Pharmacol Ther 107(6):1383\u20131393. https:\/\/doi.org\/10.1002\/cpt.1751","journal-title":"Clin Pharmacol Ther"},{"issue":"1\u20132","key":"701_CR8","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1016\/j.cell.2017.11.033","volume":"172","author":"AS Hauser","year":"2018","unstructured":"Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM (2018) Pharmacogenomics of GPCR drug targets. Cell 172(1\u20132):41\u20135419. https:\/\/doi.org\/10.1016\/j.cell.2017.11.033","journal-title":"Cell"},{"key":"701_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiolchem.2019.107166","volume":"84","author":"M Manish","year":"2020","unstructured":"Manish M, Lynn AM, Mishra S (2020) Cytochrome p450 2c9 polymorphism: effect of amino acid substitutions on protein flexibility in the presence of tamoxifen. Comput Biol Chem 84:107166. https:\/\/doi.org\/10.1016\/j.compbiolchem.2019.107166","journal-title":"Comput Biol Chem"},{"key":"701_CR10","doi-asserted-by":"publisher","first-page":"341","DOI":"10.2147\/pgpm.s230201","volume":"12","author":"GH Oliveira-Paula","year":"2019","unstructured":"Oliveira-Paula GH, Pereira SC, Tanus-Santos JE, Lacchini R (2019) Pharmacogenomics and hypertension: current insights. Pharmacogenomics Pers Med 12:341\u2013359. https:\/\/doi.org\/10.2147\/pgpm.s230201","journal-title":"Pharmacogenomics Pers Med"},{"issue":"4","key":"701_CR11","doi-asserted-by":"publisher","first-page":"1306","DOI":"10.1016\/j.celrep.2014.10.010","volume":"9","author":"NJ Bessman","year":"2014","unstructured":"Bessman NJ, Bagchi A, Ferguson KM, Lemmon MA (2014) Complex relationship between ligand binding and dimerization in the epidermal growth factor receptor. Cell Rep 9(4):1306\u20131317. https:\/\/doi.org\/10.1016\/j.celrep.2014.10.010","journal-title":"Cell Rep"},{"issue":"12","key":"701_CR12","doi-asserted-by":"publisher","first-page":"1439","DOI":"10.1038\/ng.2822","volume":"45","author":"W Toy","year":"2013","unstructured":"Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45(12):1439\u20131445. https:\/\/doi.org\/10.1038\/ng.2822","journal-title":"Nat Genet"},{"key":"701_CR13","doi-asserted-by":"publisher","DOI":"10.7554\/elife.12792","author":"SW Fanning","year":"2016","unstructured":"Fanning SW, Mayne CG, Dharmarajan V, Carlson KE, Martin TA, Novick SJ, Toy W, Green B, Panchamukhi S, Katzenellenbogen BS, Tajkhorshid E, Griffin PR, Shen Y, Chandarlapaty S, Katzenellenbogen JA, Greene GL (2016) Estrogen receptor alpha somatic mutations y537s and d538g confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. eLife. https:\/\/doi.org\/10.7554\/elife.12792","journal-title":"eLife"},{"key":"701_CR14","doi-asserted-by":"publisher","DOI":"10.1101\/119933","author":"OPI Rosello","year":"2017","unstructured":"Rosello OPI, Vlasova AV, Shichkova PA, Markov Y, Vlasov PK, Kondrashov FA (2017) Genomic analysis of human polymorphisms affecting drug-protein interactions. bioRxiv. https:\/\/doi.org\/10.1101\/119933","journal-title":"bioRxiv"},{"key":"701_CR15","doi-asserted-by":"publisher","DOI":"10.1002\/0471142905.hg0720s76","author":"I Adzhubei","year":"2013","unstructured":"Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. https:\/\/doi.org\/10.1002\/0471142905.hg0720s76","journal-title":"Curr Protoc Hum Genet"},{"key":"701_CR16","doi-asserted-by":"publisher","DOI":"10.1093\/gbe\/evac004","author":"L Sandell","year":"2022","unstructured":"Sandell L, Sharp NP (2022) Fitness effects of mutations: an assessment of PROVEAN predictions using mutation accumulation data. Genome Biol Evol. https:\/\/doi.org\/10.1093\/gbe\/evac004","journal-title":"Genome Biol Evol"},{"issue":"13","key":"701_CR17","doi-asserted-by":"publisher","first-page":"3812","DOI":"10.1093\/nar\/gkg509","volume":"31","author":"PC Ng","year":"2003","unstructured":"Ng PC (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812\u20133814. https:\/\/doi.org\/10.1093\/nar\/gkg509","journal-title":"Nucleic Acids Res"},{"key":"701_CR18","doi-asserted-by":"publisher","DOI":"10.1038\/s41698-021-00156-5","author":"FS Krebs","year":"2021","unstructured":"Krebs FS, Zoete V, Trottet M, Pouchon T, Bovigny C, Michielin O (2021) Swiss-PO: a new tool to analyze the impact of mutations on protein three-dimensional structures for precision oncology. npj Precis Oncol. https:\/\/doi.org\/10.1038\/s41698-021-00156-5","journal-title":"npj Precis Oncol"},{"issue":"90001","key":"701_CR19","doi-asserted-by":"publisher","first-page":"520","DOI":"10.1093\/nar\/gkh104","volume":"32","author":"NO Stitziel","year":"2004","unstructured":"Stitziel NO (2004) topoSNP: a topographic database of non-synonymous single nucleotide polymorphisms with and without known disease association. Nucleic Acids Res 32(90001):520\u2013522. https:\/\/doi.org\/10.1093\/nar\/gkh104","journal-title":"Nucleic Acids Res"},{"issue":"7","key":"701_CR20","doi-asserted-by":"publisher","first-page":"1481","DOI":"10.1016\/j.jmb.2019.02.003","volume":"431","author":"AJ Clark","year":"2019","unstructured":"Clark AJ, Negron C, Hauser K, Sun M, Wang L, Abel R, Friesner RA (2019) Relative binding affinity prediction of charge-changing sequence mutations with FEP in protein-protein interfaces. J Mol Biol 431(7):1481\u20131493. https:\/\/doi.org\/10.1016\/j.jmb.2019.02.003","journal-title":"J Mol Biol"},{"issue":"2","key":"701_CR21","doi-asserted-by":"publisher","first-page":"364","DOI":"10.1093\/bioinformatics\/btz612","volume":"36","author":"SS Nishizaki","year":"2019","unstructured":"Nishizaki SS, Ng N, Dong S, Porter RS, Morterud C, Williams C, Asman C, Switzenberg JA, Boyle AP (2019) Predicting the effects of SNPs on transcription factor binding affinity. Bioinformatics 36(2):364\u2013372. https:\/\/doi.org\/10.1093\/bioinformatics\/btz612","journal-title":"Bioinformatics"},{"issue":"4","key":"701_CR22","doi-asserted-by":"publisher","first-page":"1770","DOI":"10.1021\/ct401022c","volume":"10","author":"M Li","year":"2014","unstructured":"Li M, Petukh M, Alexov E, Panchenko AR (2014) Predicting the impact of missense mutations on protein-protein binding affinity. J Chem Theory Comput 10(4):1770\u20131780. https:\/\/doi.org\/10.1021\/ct401022c","journal-title":"J Chem Theory Comput"},{"key":"701_CR23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-56970-3_21","author":"J Zhao","year":"2017","unstructured":"Zhao J, Li D, Seo J, Allen AS, Gord\u00e2n R (2017) Quantifying the impact of non-coding variants on transcription factor-DNA binding. Res Comput Mol Biol. https:\/\/doi.org\/10.1007\/978-3-319-56970-3_21","journal-title":"Res Comput Mol Biol"},{"issue":"3","key":"701_CR24","doi-asserted-by":"publisher","first-page":"0151173","DOI":"10.1371\/journal.pone.0151173","volume":"11","author":"F Xing","year":"2016","unstructured":"Xing F, Matsumiya T, Hayakari R, Yoshida H, Kawaguchi S, Takahashi I, Nakaji S, Imaizumi T (2016) Alteration of antiviral signalling by single nucleotide polymorphisms (SNPs) of mitochondrial antiviral signalling protein (MAVS). PLoS ONE 11(3):0151173. https:\/\/doi.org\/10.1371\/journal.pone.0151173","journal-title":"PLoS ONE"},{"key":"701_CR25","doi-asserted-by":"publisher","DOI":"10.1186\/1471-2105-10-s8-s6","author":"A Bauer-Mehren","year":"2009","unstructured":"Bauer-Mehren A, Furlong LI, Rautschka M, Sanz F (2009) From SNPs to pathways: integration of functional effect of sequence variations on models of cell signalling pathways. BMC Bioinform. https:\/\/doi.org\/10.1186\/1471-2105-10-s8-s6","journal-title":"BMC Bioinform"},{"issue":"7","key":"701_CR26","doi-asserted-by":"publisher","first-page":"1780","DOI":"10.1002\/prot.24073","volume":"80","author":"T Arod\u017a","year":"2012","unstructured":"Arod\u017a T, P\u0142onka PM (2012) Effects of point mutations on protein structure are nonexponentially distributed. Proteins: Struct Funct Bioinform 80(7):1780\u20131790. https:\/\/doi.org\/10.1002\/prot.24073","journal-title":"Proteins: Struct Funct Bioinform"},{"issue":"8","key":"701_CR27","doi-asserted-by":"publisher","first-page":"0133969","DOI":"10.1371\/journal.pone.0133969","volume":"10","author":"N Nagasundaram","year":"2015","unstructured":"N N, Zhu H, Liu J, V K, C GPD, Chakraborty C, Chen L, (2015) Analysing the effect of mutation on protein function and discovering potential inhibitors of CDK4: molecular modelling and dynamics studies. PLoS ONE 10(8):0133969. https:\/\/doi.org\/10.1371\/journal.pone.0133969","journal-title":"PLoS ONE"},{"issue":"3","key":"701_CR28","doi-asserted-by":"publisher","first-page":"0171355","DOI":"10.1371\/journal.pone.0171355","volume":"12","author":"R Bhattacharya","year":"2017","unstructured":"Bhattacharya R, Rose PW, Burley SK, Prli\u0107 A (2017) Impact of genetic variation on three dimensional structure and function of proteins. PLoS ONE 12(3):0171355. https:\/\/doi.org\/10.1371\/journal.pone.0171355","journal-title":"PLoS ONE"},{"issue":"3","key":"701_CR29","doi-asserted-by":"publisher","first-page":"581","DOI":"10.1042\/bj20121221","volume":"449","author":"RA Studer","year":"2013","unstructured":"Studer RA, Dessailly BH, Orengo CA (2013) Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem J 449(3):581\u2013594. https:\/\/doi.org\/10.1042\/bj20121221","journal-title":"Biochem J"},{"issue":"11","key":"701_CR30","doi-asserted-by":"publisher","first-page":"1621","DOI":"10.1093\/bioinformatics\/btx031","volume":"33","author":"AR Choudhury","year":"2017","unstructured":"Choudhury AR, Cheng T, Phan L, Bryant SH, Wang Y (2017) Supporting precision medicine by data mining across multi-disciplines: an integrative approach for generating comprehensive linkages between single nucleotide variants (SNVs) and drug-binding sites. Bioinformatics 33(11):1621\u20131629. https:\/\/doi.org\/10.1093\/bioinformatics\/btx031","journal-title":"Bioinformatics"},{"issue":"1","key":"701_CR31","doi-asserted-by":"publisher","first-page":"160","DOI":"10.1093\/bioinformatics\/btz538","volume":"36","author":"M Schneider","year":"2019","unstructured":"Schneider M, Pons J-L, Bourguet W, Labesse G (2019) Towards accurate high-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity. Bioinformatics 36(1):160\u2013168. https:\/\/doi.org\/10.1093\/bioinformatics\/btz538","journal-title":"Bioinformatics"},{"issue":"3","key":"701_CR32","doi-asserted-by":"publisher","first-page":"1006","DOI":"10.1039\/c5mb00650c","volume":"12","author":"N Shaikh","year":"2016","unstructured":"Shaikh N, Sharma M, Garg P (2016) An improved approach for predicting drug-target interaction: proteochemometrics to molecular docking. Mol BioSyst 12(3):1006\u20131014. https:\/\/doi.org\/10.1039\/c5mb00650c","journal-title":"Mol BioSyst"},{"issue":"W1","key":"701_CR33","doi-asserted-by":"publisher","first-page":"557","DOI":"10.1093\/nar\/gkw390","volume":"44","author":"DEV Pires","year":"2016","unstructured":"Pires DEV, Ascher DB (2016) CSM-lig: a web server for assessing and comparing protein-small molecule affinities. Nucleic Acids Res 44(W1):557\u2013561. https:\/\/doi.org\/10.1093\/nar\/gkw390","journal-title":"Nucleic Acids Res"},{"key":"701_CR34","doi-asserted-by":"publisher","DOI":"10.1038\/srep29575","author":"DEV Pires","year":"2016","unstructured":"Pires DEV, Blundell TL, Ascher DB (2016) mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep. https:\/\/doi.org\/10.1038\/srep29575","journal-title":"Sci Rep"},{"issue":"W1","key":"701_CR35","doi-asserted-by":"publisher","first-page":"469","DOI":"10.1093\/nar\/gkw458","volume":"44","author":"DEV Pires","year":"2016","unstructured":"Pires DEV, Ascher DB (2016) mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res 44(W1):469\u2013473. https:\/\/doi.org\/10.1093\/nar\/gkw458","journal-title":"Nucleic Acids Res"},{"issue":"D1","key":"701_CR36","doi-asserted-by":"publisher","first-page":"256","DOI":"10.1093\/nar\/gkw905","volume":"45","author":"P Kim","year":"2016","unstructured":"Kim P, Zhao J, Lu P, Zhao Z (2016) mutLBSgeneDB: mutated ligand binding site gene DataBase. Nucleic Acids Res 45(D1):256\u2013263. https:\/\/doi.org\/10.1093\/nar\/gkw905","journal-title":"Nucleic Acids Res"},{"issue":"7","key":"701_CR37","doi-asserted-by":"publisher","first-page":"1004276","DOI":"10.1371\/journal.pcbi.1004276","volume":"11","author":"M Petukh","year":"2015","unstructured":"Petukh M, Li M, Alexov E (2015) Predicting binding free energy change caused by point mutations with knowledge-modified MM\/PBSA method. PLoS Comput Biol 11(7):1004276. https:\/\/doi.org\/10.1371\/journal.pcbi.1004276","journal-title":"PLoS Comput Biol"},{"issue":"11\u201312","key":"701_CR38","doi-asserted-by":"publisher","first-page":"719","DOI":"10.1002\/minf.201400066","volume":"33","author":"R Sawada","year":"2014","unstructured":"Sawada R, Kotera M, Yamanishi Y (2014) Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Inform 33(11\u201312):719\u2013731. https:\/\/doi.org\/10.1002\/minf.201400066","journal-title":"Mol Inform"},{"key":"701_CR39","doi-asserted-by":"publisher","DOI":"10.1186\/1752-0509-7-s6-s2","author":"M Kotera","year":"2013","unstructured":"Kotera M, Tabei Y, Yamanishi Y, Moriya Y, Tokimatsu T, Kanehisa M, Goto S (2013) KCF-s: KEGG chemical function and substructure for improved interpretability and prediction in chemical bioinformatics. BMC Syst Biol. https:\/\/doi.org\/10.1186\/1752-0509-7-s6-s2","journal-title":"BMC Syst Biol"},{"key":"701_CR40","doi-asserted-by":"publisher","unstructured":"Ammar A, Cavill R, Evelo C, Willighagen E (2022) PSnpBind: a database of mutated binding site protein-ligand complexes constructed using a multithreaded virtual screening workflow. J Cheminform. https:\/\/doi.org\/10.1186\/s13321-021-00573-5. [cito:usesDataFrom]","DOI":"10.1186\/s13321-021-00573-5"},{"key":"701_CR41","doi-asserted-by":"publisher","unstructured":"Wang R, Fang X, Lu Y, Yang C-Y, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48(12):4111\u20134119. https:\/\/doi.org\/10.1021\/jm048957q. [cito:usesDataFrom]","DOI":"10.1021\/jm048957q"},{"issue":"11","key":"701_CR42","doi-asserted-by":"publisher","first-page":"1023","DOI":"10.1039\/c4ib00175c","volume":"6","author":"QU Ain","year":"2014","unstructured":"Ain QU, M\u00e9ndez-Lucio O, Ciriano IC, Malliavin T, van Westen GJP, Bender A (2014) Modelling ligand selectivity of serine proteases using integrative proteochemometric approaches improves model performance and allows the multi-target dependent interpretation of features. Integr Biol 6(11):1023\u20131033. https:\/\/doi.org\/10.1039\/c4ib00175c","journal-title":"Integr Biol"},{"issue":"2","key":"701_CR43","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1016\/s0006-3495(94)80782-9","volume":"66","author":"G Schneider","year":"1994","unstructured":"Schneider G, Wrede P (1994) The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophys J 66(2):335\u2013344. https:\/\/doi.org\/10.1016\/s0006-3495(94)80782-9","journal-title":"Biophys J"},{"key":"701_CR44","doi-asserted-by":"publisher","unstructured":"Xiao N, Cao D-S, Zhu M-F, Xu Q-S (2015) protr\/ProtrWeb: R package and web server for generating various numerical representation schemes of protein sequences. Bioinformatics 31(11):1857\u20131859. https:\/\/doi.org\/10.1093\/bioinformatics\/btv042. [cito:usesMethodIn]","DOI":"10.1093\/bioinformatics\/btv042"},{"key":"701_CR45","doi-asserted-by":"publisher","unstructured":"Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2007) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36(Database):202\u2013205. https:\/\/doi.org\/10.1093\/nar\/gkm998. [cito:usesDataFrom]","DOI":"10.1093\/nar\/gkm998"},{"key":"701_CR46","doi-asserted-by":"publisher","unstructured":"Prlic A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin PV, Chapman M, Gao J, Koh CH, Foisy S, Holland R, Rimsa G, Heuer ML, Brandstatter-Muller H, Bourne PE, Willis S (2012) BioJava: an open-source framework for bioinformatics in 2012. Bioinformatics 28(20):2693\u20132695. https:\/\/doi.org\/10.1093\/bioinformatics\/bts494. [cito:usesMethodIn]","DOI":"10.1093\/bioinformatics\/bts494"},{"key":"701_CR47","doi-asserted-by":"publisher","unstructured":"Chen CR, Makhatadze GI (2015) ProteinVolume: calculating molecular van der waals and void volumes in proteins. BMC Bioinform. https:\/\/doi.org\/10.1186\/s12859-015-0531-2. [cito:usesMethodIn]","DOI":"10.1186\/s12859-015-0531-2"},{"issue":"12","key":"701_CR48","doi-asserted-by":"publisher","first-page":"2577","DOI":"10.1002\/bip.360221211","volume":"22","author":"W Kabsch","year":"1983","unstructured":"Kabsch W, Sander C (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577\u20132637. https:\/\/doi.org\/10.1002\/bip.360221211","journal-title":"Biopolymers"},{"issue":"2","key":"701_CR49","doi-asserted-by":"publisher","first-page":"419","DOI":"10.3390\/biom4020419","volume":"4","author":"N Pace","year":"2014","unstructured":"Pace N, Weerapana E (2014) Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules 4(2):419\u2013434. https:\/\/doi.org\/10.3390\/biom4020419","journal-title":"Biomolecules"},{"issue":"W1","key":"701_CR50","doi-asserted-by":"publisher","first-page":"338","DOI":"10.1093\/nar\/gkz383","volume":"47","author":"CHM Rodrigues","year":"2019","unstructured":"Rodrigues CHM, Myung Y, Pires DEV, Ascher DB (2019) mCSM-PPI2: predicting the effects of mutations on protein-protein interactions. Nucleic Acids Res 47(W1):338\u2013344. https:\/\/doi.org\/10.1093\/nar\/gkz383","journal-title":"Nucleic Acids Res"},{"issue":"Web Server","key":"701_CR51","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1093\/nar\/gkl305","volume":"34","author":"ZR Li","year":"2006","unstructured":"Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ (2006) PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 34(Web Server):32\u201337. https:\/\/doi.org\/10.1093\/nar\/gkl305","journal-title":"Nucleic Acids Res"},{"issue":"5","key":"701_CR52","doi-asserted-by":"publisher","first-page":"565","DOI":"10.1023\/a:1020603401001","volume":"18","author":"MM Gromiha","year":"1999","unstructured":"Gromiha MM, Oobatake M, Kono H, Uedaira H, Sarai A (1999) Relationship between amino acid properties and protein stability: Buried mutations. J Protein Chem 18(5):565\u2013578. https:\/\/doi.org\/10.1023\/a:1020603401001","journal-title":"J Protein Chem"},{"issue":"6","key":"701_CR53","doi-asserted-by":"publisher","first-page":"1569","DOI":"10.1042\/bst0351569","volume":"35","author":"MM Gromiha","year":"2007","unstructured":"Gromiha MM (2007) Prediction of protein stability upon point mutations. Biochem Soc Trans 35(6):1569\u20131573. https:\/\/doi.org\/10.1042\/bst0351569","journal-title":"Biochem Soc Trans"},{"issue":"2","key":"701_CR54","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1016\/j.pbiomolbio.2003.09.003","volume":"86","author":"MM Gromiha","year":"2004","unstructured":"Gromiha MM, Selvaraj S (2004) Inter-residue interactions in protein folding and stability. Prog Biophys Mol Biol 86(2):235\u2013277. https:\/\/doi.org\/10.1016\/j.pbiomolbio.2003.09.003","journal-title":"Prog Biophys Mol Biol"},{"issue":"2","key":"701_CR55","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1016\/0022-2836(73)90011-9","volume":"79","author":"A Shrake","year":"1973","unstructured":"Shrake A, Rupley JA (1973) Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol 79(2):351\u2013371. https:\/\/doi.org\/10.1016\/0022-2836(73)90011-9","journal-title":"J Mol Biol"},{"key":"701_CR56","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.compbiolchem.2014.11.007","volume":"54","author":"CM Topham","year":"2015","unstructured":"Topham CM, Smith JC (2015) Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues. Comput Biol Chem 54:33\u201343. https:\/\/doi.org\/10.1016\/j.compbiolchem.2014.11.007","journal-title":"Comput Biol Chem"},{"key":"701_CR57","doi-asserted-by":"publisher","unstructured":"Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33:382\u2013388. https:\/\/doi.org\/10.1093\/nar\/gki387. [cito:usesMethodIn]","DOI":"10.1093\/nar\/gki387"},{"issue":"2","key":"701_CR58","doi-asserted-by":"publisher","first-page":"493","DOI":"10.1021\/ci025584y","volume":"43","author":"C Steinbeck","year":"2003","unstructured":"Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) The Chemistry Development Kit (CDK): an open-source java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43(2):493\u2013500. https:\/\/doi.org\/10.1021\/ci025584y. [cito:usesMethodIn]","journal-title":"J Chem Inf Comput Sci"},{"key":"701_CR59","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-017-0220-4","author":"EL Willighagen","year":"2017","unstructured":"Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N, Kuhn S, Pluskal T, Rojas-Chert\u00f3 M, Spjuth O, Torrance G, Evelo CT, Guha R, Steinbeck C (2017) The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform. https:\/\/doi.org\/10.1186\/s13321-017-0220-4","journal-title":"J Cheminform"},{"key":"701_CR60","unstructured":"Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825\u20132830. [cito:usesMethodIn]"},{"issue":"3","key":"701_CR61","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1002\/pro.5560010313","volume":"1","author":"U Hobohm","year":"1992","unstructured":"Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of representative protein data sets. Protein Sci 1(3):409\u2013417. https:\/\/doi.org\/10.1002\/pro.5560010313","journal-title":"Protein Sci"},{"issue":"3","key":"701_CR62","doi-asserted-by":"publisher","first-page":"522","DOI":"10.1002\/pro.5560030317","volume":"3","author":"U Hobohm","year":"1994","unstructured":"Hobohm U, Sander C (1994) Enlarged representative set of protein structures. Protein Sci 3(3):522\u2013524. https:\/\/doi.org\/10.1002\/pro.5560030317","journal-title":"Protein Sci"},{"issue":"13","key":"701_CR63","doi-asserted-by":"publisher","first-page":"3789","DOI":"10.1093\/nar\/gkg620","volume":"31","author":"S Mika","year":"2003","unstructured":"Mika S (2003) UniqueProt: creating representative protein sequence sets. Nucleic Acids Res 31(13):3789\u20133791. https:\/\/doi.org\/10.1093\/nar\/gkg620","journal-title":"Nucleic Acids Res"},{"key":"701_CR64","doi-asserted-by":"publisher","DOI":"10.15406\/mojpb.2017.05.00174","author":"GA Pavlopoulos","year":"2017","unstructured":"Pavlopoulos GA (2017) How to cluster protein sequences: tools, tips and commands. MOJ Proteom Bioinform. https:\/\/doi.org\/10.15406\/mojpb.2017.05.00174","journal-title":"MOJ Proteom Bioinform"},{"key":"701_CR65","doi-asserted-by":"publisher","unstructured":"Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460\u20132461. https:\/\/doi.org\/10.1093\/bioinformatics\/btq461. [cito:usesMethodIn]","DOI":"10.1093\/bioinformatics\/btq461"},{"key":"701_CR66","doi-asserted-by":"publisher","unstructured":"Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform. https:\/\/doi.org\/10.1186\/1471-2105-10-421. [cito:usesMethodIn]","DOI":"10.1186\/1471-2105-10-421"},{"key":"701_CR67","doi-asserted-by":"publisher","unstructured":"El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2018) The pfam protein families database in 2019. Nucleic Acids Res 47(D1):427\u2013432. https:\/\/doi.org\/10.1093\/nar\/gky995. [cito:citesAsDataSource]","DOI":"10.1093\/nar\/gky995"},{"key":"701_CR68","doi-asserted-by":"publisher","unstructured":"Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(Suppl):29\u201337. https:\/\/doi.org\/10.1093\/nar\/gkr367. [cito:usesMethodIn]","DOI":"10.1093\/nar\/gkr367"},{"key":"701_CR69","doi-asserted-by":"publisher","DOI":"10.1186\/s12859-018-2109-2","author":"RG Govindaraj","year":"2018","unstructured":"Govindaraj RG, Brylinski M (2018) Comparative assessment of strategies to identify similar ligand-binding pockets in proteins. BMC Bioinform. https:\/\/doi.org\/10.1186\/s12859-018-2109-2","journal-title":"BMC Bioinform"},{"key":"701_CR70","doi-asserted-by":"publisher","unstructured":"Weill N, Rognan D (2010) Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites. J Chem Inf Model 50(1):123\u2013135. https:\/\/doi.org\/10.1021\/ci900349y. [cito:usesMethodIn]","DOI":"10.1021\/ci900349y"},{"issue":"11","key":"701_CR71","doi-asserted-by":"publisher","first-page":"1006483","DOI":"10.1371\/journal.pcbi.1006483","volume":"14","author":"C Ehrt","year":"2018","unstructured":"Ehrt C, Brinkjost T, Koch O (2018) A benchmark driven guide to binding site comparison: an exhaustive evaluation using tailor-made data sets (ProSPECCTs). PLoS Comput Biol 14(11):1006483. https:\/\/doi.org\/10.1371\/journal.pcbi.1006483","journal-title":"PLoS Comput Biol"},{"key":"701_CR72","doi-asserted-by":"publisher","DOI":"10.18637\/jss.v028.i05","author":"M Kuhn","year":"2008","unstructured":"Kuhn M (2008) Building predictive models in r using the caret package. J Stat Softw. https:\/\/doi.org\/10.18637\/jss.v028.i05","journal-title":"J Stat Softw"},{"key":"701_CR73","doi-asserted-by":"publisher","unstructured":"Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R, Lai L (2007) Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J Chem Inf Model 47(6):2140\u20132148. https:\/\/doi.org\/10.1021\/ci700257y. [cito:usesMethodIn]","DOI":"10.1021\/ci700257y"},{"key":"701_CR74","first-page":"2079","volume":"11","author":"GC Cawley","year":"2010","unstructured":"Cawley GC, Talbot NLC (2010) On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res 11:2079\u20132107","journal-title":"J Mach Learn Res"},{"key":"701_CR75","doi-asserted-by":"publisher","unstructured":"R\u00fccker C, R\u00fccker G, Meringer M (2007) Y-randomization and its variants in QSPR\/QSAR. J Chem Inf Model 47(6):2345\u20132357. https:\/\/doi.org\/10.1021\/ci700157b. [cito:usesMethodIn]","DOI":"10.1021\/ci700157b"},{"issue":"1","key":"701_CR76","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software. ACM SIGKDD Explor Newsl 11(1):10\u201318. https:\/\/doi.org\/10.1145\/1656274.1656278","journal-title":"ACM SIGKDD Explor Newsl"},{"issue":"Suppl 1","key":"701_CR77","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1093\/bioinformatics\/bti1007","volume":"21","author":"KM Borgwardt","year":"2005","unstructured":"Borgwardt KM, Ong CS, Schonauer S, Vishwanathan SVN, Smola AJ, Kriegel H-P (2005) Protein function prediction via graph kernels. Bioinformatics 21(Suppl 1):47\u201356. https:\/\/doi.org\/10.1093\/bioinformatics\/bti1007","journal-title":"Bioinformatics"},{"issue":"4","key":"701_CR78","doi-asserted-by":"publisher","first-page":"1023","DOI":"10.1016\/j.jmb.2006.04.024","volume":"359","author":"D Kuhn","year":"2006","unstructured":"Kuhn D, Weskamp N, Schmitt S, H\u00fcllermeier E, Klebe G (2006) From the similarity analysis of protein cavities to the functional classification of protein families using cavbase. J Mol Biol 359(4):1023\u20131044. https:\/\/doi.org\/10.1016\/j.jmb.2006.04.024","journal-title":"J Mol Biol"},{"issue":"5","key":"701_CR79","doi-asserted-by":"publisher","first-page":"1003592","DOI":"10.1371\/journal.pcbi.1003592","volume":"10","author":"N Zhao","year":"2014","unstructured":"Zhao N, Han JG, Shyu C-R, Korkin D (2014) Determining effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning. PLoS Comput Biol 10(5):1003592. https:\/\/doi.org\/10.1371\/journal.pcbi.1003592","journal-title":"PLoS Comput Biol"},{"key":"701_CR80","doi-asserted-by":"publisher","DOI":"10.1186\/1758-2946-5-42","author":"GJ van Westen","year":"2013","unstructured":"van Westen GJ, Swier RF, Cortes-Ciriano I, Wegner JK, Overington JP, IJzerman AP, van Vlijmen HW, Bender A, (2013) Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets. J Cheminform. https:\/\/doi.org\/10.1186\/1758-2946-5-42","journal-title":"J Cheminform"},{"issue":"13","key":"701_CR81","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1093\/bioinformatics\/bty287","volume":"34","author":"H \u00d6zt\u00fcrk","year":"2018","unstructured":"\u00d6zt\u00fcrk H, Ozkirimli E, \u00d6zg\u00fcr A (2018) A novel methodology on distributed representations of proteins using their interacting ligands. Bioinformatics 34(13):295\u2013303. https:\/\/doi.org\/10.1093\/bioinformatics\/bty287","journal-title":"Bioinformatics"},{"issue":"2","key":"701_CR82","doi-asserted-by":"publisher","first-page":"513","DOI":"10.1039\/c7sc02664a","volume":"9","author":"Z Wu","year":"2018","unstructured":"Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular machine learning. Chem Sci 9(2):513\u2013530. https:\/\/doi.org\/10.1039\/c7sc02664a","journal-title":"Chem Sci"},{"issue":"4","key":"701_CR83","doi-asserted-by":"publisher","first-page":"783","DOI":"10.1021\/ci400084k","volume":"53","author":"RP Sheridan","year":"2013","unstructured":"Sheridan RP (2013) Time-split cross-validation as a method for estimating the goodness of prospective prediction. J Chem Inf Model 53(4):783\u2013790. https:\/\/doi.org\/10.1021\/ci400084k","journal-title":"J Chem Inf Model"},{"issue":"1","key":"701_CR84","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/a:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman L (2001) Random forests. Mach Learn 45(1):5\u201332. https:\/\/doi.org\/10.1023\/a:1010933404324","journal-title":"Mach Learn"},{"issue":"1","key":"701_CR85","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1093\/bioinformatics\/btn583","volume":"25","author":"J Wu","year":"2008","unstructured":"Wu J, Liu H, Duan X, Ding Y, Wu H, Bai Y, Sun X (2008) Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics 25(1):30\u201335. https:\/\/doi.org\/10.1093\/bioinformatics\/btn583","journal-title":"Bioinformatics"},{"issue":"22","key":"701_CR86","doi-asserted-by":"publisher","first-page":"4321","DOI":"10.1002\/pmic.201100217","volume":"11","author":"N Zhao","year":"2011","unstructured":"Zhao N, Pang B, Shyu C-R, Korkin D (2011) Feature-based classification of native and non-native protein-protein interactions: Comparing supervised and semi-supervised learning approaches. Proteomics 11(22):4321\u20134330. https:\/\/doi.org\/10.1002\/pmic.201100217","journal-title":"Proteomics"},{"key":"701_CR87","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1016\/j.eswa.2016.12.008","volume":"72","author":"G Cano","year":"2017","unstructured":"Cano G, Garcia-Rodriguez J, Garcia-Garcia A, Perez-Sanchez H, Benediktsson JA, Thapa A, Barr A (2017) Automatic selection of molecular descriptors using random forest: application to drug discovery. Expert Syst Appl 72:151\u2013159. https:\/\/doi.org\/10.1016\/j.eswa.2016.12.008","journal-title":"Expert Syst Appl"},{"key":"701_CR88","doi-asserted-by":"publisher","unstructured":"Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning - ICML \u201906. https:\/\/doi.org\/10.1145\/1143844.1143865","DOI":"10.1145\/1143844.1143865"},{"key":"701_CR89","doi-asserted-by":"publisher","unstructured":"Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning - ICML \u201908 . https:\/\/doi.org\/10.1145\/1390156.1390169","DOI":"10.1145\/1390156.1390169"},{"key":"701_CR90","doi-asserted-by":"publisher","unstructured":"de Souza BF, de Carvalho ACPLF, Soares C (2010) A comprehensive comparison of ML algorithms for gene expression data classification. In: The 2010 International Joint Conference on Neural Networks (IJCNN) - IEEE. https:\/\/doi.org\/10.1109\/ijcnn.2010.5596651","DOI":"10.1109\/ijcnn.2010.5596651"},{"key":"701_CR91","doi-asserted-by":"publisher","unstructured":"El-Manzalawy Y, Dobbs D, Honavar V (2012) Predicting protective bacterial antigens using random forest classifiers. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine - BCB \u201912 - ACM Press (2012). https:\/\/doi.org\/10.1145\/2382936.2382991","DOI":"10.1145\/2382936.2382991"},{"key":"701_CR92","doi-asserted-by":"publisher","DOI":"10.26434\/chemrxiv.9866912.v1","author":"M Rezaei","year":"2019","unstructured":"Rezaei M, Li Y, Li X, Li C (2019) Improving the accuracy of protein-ligand binding affinity prediction by deep learning models: benchmark and model. ChemRxiv. https:\/\/doi.org\/10.26434\/chemrxiv.9866912.v1","journal-title":"ChemRxiv"},{"issue":"2","key":"701_CR93","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1021\/acs.jcim.7b00650","volume":"58","author":"J Jim\u00e9nez","year":"2018","unstructured":"Jim\u00e9nez J, \u0160kali\u010d M, Mart\u00ednez-Rosell G, Fabritiis GD (2018) Kdeep: Protein-ligand absolute binding affinity prediction via 3d-convolutional neural networks. J Chem Inf Mode 58(2):287\u2013296. https:\/\/doi.org\/10.1021\/acs.jcim.7b00650","journal-title":"J Chem Inf Mode"},{"issue":"19","key":"701_CR94","doi-asserted-by":"publisher","first-page":"3036","DOI":"10.1093\/bioinformatics\/btx350","volume":"33","author":"J Jim\u00e9nez","year":"2017","unstructured":"Jim\u00e9nez J, Doerr S, Mart\u00ednez-Rosell G, Rose AS, Fabritiis GD (2017) DeepSite: protein-binding site predictor using 3d-convolutional neural networks. Bioinformatics 33(19):3036\u20133042. https:\/\/doi.org\/10.1093\/bioinformatics\/btx350","journal-title":"Bioinformatics"},{"issue":"12","key":"701_CR95","doi-asserted-by":"publisher","first-page":"1708","DOI":"10.1021\/acscentsci.8b00717","volume":"4","author":"M Aldeghi","year":"2018","unstructured":"Aldeghi M, Gapsys V, de Groot BL (2018) Accurate estimation of ligand binding affinity changes upon protein mutation. ACS Central Sci 4(12):1708\u20131718. https:\/\/doi.org\/10.1021\/acscentsci.8b00717","journal-title":"ACS Central Sci"}],"container-title":["Journal of Cheminformatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13321-023-00701-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1186\/s13321-023-00701-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13321-023-00701-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,2]],"date-time":"2023-03-02T17:06:50Z","timestamp":1677776810000},"score":1,"resource":{"primary":{"URL":"https:\/\/jcheminf.biomedcentral.com\/articles\/10.1186\/s13321-023-00701-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,2]]},"references-count":95,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["701"],"URL":"https:\/\/doi.org\/10.1186\/s13321-023-00701-3","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.3.rs-2190482\/v1","asserted-by":"object"}]},"ISSN":["1758-2946"],"issn-type":[{"type":"electronic","value":"1758-2946"}],"subject":[],"published":{"date-parts":[[2023,3,2]]},"assertion":[{"value":"21 October 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 March 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"31"}}