{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T09:01:08Z","timestamp":1702976468359},"reference-count":67,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2022,10,29]],"date-time":"2022-10-29T00:00:00Z","timestamp":1667001600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,10,29]],"date-time":"2022-10-29T00:00:00Z","timestamp":1667001600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"Agence Nationale de Recherches","award":["2019 CE14 OCHRE"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Cheminform"],"abstract":"Abstract<\/jats:title>G protein-coupled receptors are involved in many biological processes, relaying the extracellular signal inside the cell. Signaling is regulated by the interactions between receptors and their ligands, it can be stimulated by agonists, or inhibited by antagonists or inverse agonists. The development of a new drug targeting a member of this family requires to take into account the pharmacological profile of the designed ligands in order to elicit the desired response. The structure-based virtual screening of chemical libraries may prioritize a specific class of ligands by combining docking results and ligand binding information provided by crystallographic structures. The performance of the method depends on the relevance of the structural data, in particular the conformation of the targeted site, the binding mode of the reference ligand, and the approach used to compare the interactions formed by the docked ligand with those formed by the reference ligand in the crystallographic structure. Here, we propose a new method based on the conformational dynamics of a single protein\u2013ligand reference complex to improve the biased selection of ligands with specific pharmacological properties in a structure-based virtual screening exercise. Interactions patterns between a reference agonist and the receptor, here exemplified on the \u03b22 adrenergic receptor, were extracted from molecular dynamics simulations of the agonist\/receptor complex and encoded in graphs used to train a one-class machine learning classifier. Different conditions were tested: low to high affinity agonists, varying simulation duration, considering or ignoring hydrophobic contacts, and tuning of the classifier parametrization. The best models applied to post-process raw data from retrospective virtual screening obtained by docking of test libraries effectively filtered out irrelevant poses, discarding inactive and non-agonist ligands while identifying agonists. Taken together, our results suggest that consistency of the binding mode during the simulation is a key to the success of the method.<\/jats:p>","DOI":"10.1186\/s13321-022-00654-z","type":"journal-article","created":{"date-parts":[[2022,10,29]],"date-time":"2022-10-29T05:02:46Z","timestamp":1667019766000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["One class classification for the detection of \u03b22 adrenergic receptor agonists using single-ligand dynamic interaction data"],"prefix":"10.1186","volume":"14","author":[{"given":"Luca","family":"Chiesa","sequence":"first","affiliation":[]},{"given":"Esther","family":"Kellenberger","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,29]]},"reference":[{"key":"654_CR1","doi-asserted-by":"publisher","first-page":"794","DOI":"10.1016\/j.bbamem.2006.10.021","volume":"1768","author":"BK Kobilka","year":"2007","unstructured":"Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta Biomembr 1768:794\u2013807. https:\/\/doi.org\/10.1016\/j.bbamem.2006.10.021","journal-title":"Biochim Biophys Acta Biomembr"},{"key":"654_CR2","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1124\/mol.117.111062","volume":"93","author":"K Sriram","year":"2018","unstructured":"Sriram K, Insel PA (2018) G Protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 93:251\u2013258. https:\/\/doi.org\/10.1124\/mol.117.111062","journal-title":"Mol Pharmacol"},{"key":"654_CR3","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1038\/s41594-017-0011-7","volume":"25","author":"D Hilger","year":"2018","unstructured":"Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25:4\u201312. https:\/\/doi.org\/10.1038\/s41594-017-0011-7","journal-title":"Nat Struct Mol Biol"},{"key":"654_CR4","doi-asserted-by":"publisher","first-page":"949","DOI":"10.1080\/17460441.2021.1909567","volume":"16","author":"J Jim\u00e9nez-Luna","year":"2021","unstructured":"Jim\u00e9nez-Luna J, Grisoni F, Weskamp N, Schneider G (2021) Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov 16:949\u2013959. https:\/\/doi.org\/10.1080\/17460441.2021.1909567","journal-title":"Expert Opin Drug Discov"},{"key":"654_CR5","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1016\/j.sbi.2019.03.022","volume":"55","author":"A Jabeen","year":"2019","unstructured":"Jabeen A, Ranganathan S (2019) Applications of machine learning in GPCR bioactive ligand discovery. Curr Opin Struct Biol 55:66\u201376. https:\/\/doi.org\/10.1016\/j.sbi.2019.03.022","journal-title":"Curr Opin Struct Biol"},{"key":"654_CR6","doi-asserted-by":"publisher","first-page":"1258","DOI":"10.1126\/science.1150577","volume":"318","author":"V Cherezov","year":"2007","unstructured":"Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human \u03b22-adrenergic g protein-coupled receptor. Science 318:1258\u20131265. https:\/\/doi.org\/10.1126\/science.1150577","journal-title":"Science"},{"key":"654_CR7","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1038\/nature10361","volume":"477","author":"SGF Rasmussen","year":"2011","unstructured":"Rasmussen SGF, DeVree BT, Zou Y et al (2011) Crystal structure of the \u03b22 adrenergic receptor\u2013Gs protein complex. Nature 477:549\u2013555. https:\/\/doi.org\/10.1038\/nature10361","journal-title":"Nature"},{"key":"654_CR8","doi-asserted-by":"publisher","first-page":"268","DOI":"10.1016\/j.tips.2012.03.007","volume":"33","author":"BK Shoichet","year":"2012","unstructured":"Shoichet BK, Kobilka BK (2012) Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 33:268\u2013272. https:\/\/doi.org\/10.1016\/j.tips.2012.03.007","journal-title":"Trends Pharmacol Sci"},{"key":"654_CR9","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1007\/978-94-007-7423-0_7","volume-title":"G protein-coupled receptors\u2014modeling and simulation","author":"AJ Kooistra","year":"2014","unstructured":"Kooistra AJ, Leurs R, de Esch IJP, de Graaf C (2014) From three-dimensional GPCR structure to rational ligand discovery. In: Filizola M (ed) G protein-coupled receptors\u2014modeling and simulation. Springer, Netherlands, pp 129\u2013157"},{"key":"654_CR10","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.cell.2020.03.003","volume":"181","author":"M Congreve","year":"2020","unstructured":"Congreve M, de Graaf C, Swain NA, Tate CG (2020) Impact of GPCR structures on drug discovery. Cell 181:81\u201391. https:\/\/doi.org\/10.1016\/j.cell.2020.03.003","journal-title":"Cell"},{"key":"654_CR11","doi-asserted-by":"publisher","first-page":"1698","DOI":"10.1124\/pharmrev.120.000246","volume":"73","author":"F Ballante","year":"2021","unstructured":"Ballante F, Kooistra AJ, Kampen S et al (2021) Structure-based virtual screening for ligands of G protein-coupled receptors: what can molecular docking do for you? Pharmacol Rev 73:1698\u20131736. https:\/\/doi.org\/10.1124\/pharmrev.120.000246","journal-title":"Pharmacol Rev"},{"key":"654_CR12","doi-asserted-by":"publisher","first-page":"1045","DOI":"10.1021\/acs.jcim.5b00066","volume":"55","author":"AJ Kooistra","year":"2015","unstructured":"Kooistra AJ, Leurs R, de Esch IJP, de Graaf C (2015) Structure-based prediction of g-protein-coupled receptor ligand function: a \u03b2-adrenoceptor case study. J Chem Inf Model 55:1045\u20131061. https:\/\/doi.org\/10.1021\/acs.jcim.5b00066","journal-title":"J Chem Inf Model"},{"key":"654_CR13","doi-asserted-by":"publisher","first-page":"528","DOI":"10.1124\/mol.113.087551","volume":"84","author":"AC Kruse","year":"2013","unstructured":"Kruse AC, Weiss DR, Rossi M et al (2013) Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol Pharmacol 84:528\u2013540. https:\/\/doi.org\/10.1124\/mol.113.087551","journal-title":"Mol Pharmacol"},{"key":"654_CR14","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1038\/nature19112","volume":"537","author":"A Manglik","year":"2016","unstructured":"Manglik A, Lin H, Aryal DK et al (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185\u2013190. https:\/\/doi.org\/10.1038\/nature19112","journal-title":"Nature"},{"key":"654_CR15","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1126\/science.aan5468","volume":"358","author":"S Wang","year":"2017","unstructured":"Wang S, Wacker D, Levit A et al (2017) D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 358:381\u2013386. https:\/\/doi.org\/10.1126\/science.aan5468","journal-title":"Science"},{"key":"654_CR16","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1038\/s41586-019-0917-9","volume":"566","author":"J Lyu","year":"2019","unstructured":"Lyu J, Wang S, Balius TE et al (2019) Ultra-large library docking for discovering new chemotypes. Nature 566:224\u2013229. https:\/\/doi.org\/10.1038\/s41586-019-0917-9","journal-title":"Nature"},{"key":"654_CR17","doi-asserted-by":"publisher","first-page":"1294","DOI":"10.1021\/jm061389p","volume":"50","author":"E Kellenberger","year":"2007","unstructured":"Kellenberger E, Springael J-Y, Parmentier M et al (2007) Identification of nonpeptide CCR5 receptor agonists by structure-based virtual screening. J Med Chem 50:1294\u20131303. https:\/\/doi.org\/10.1021\/jm061389p","journal-title":"J Med Chem"},{"key":"654_CR18","doi-asserted-by":"publisher","first-page":"609","DOI":"10.1038\/s41586-020-2027-0","volume":"579","author":"RM Stein","year":"2020","unstructured":"Stein RM, Kang HJ, McCorvy JD et al (2020) Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 579:609\u2013614. https:\/\/doi.org\/10.1038\/s41586-020-2027-0","journal-title":"Nature"},{"key":"654_CR19","doi-asserted-by":"publisher","first-page":"4978","DOI":"10.1021\/jm800710x","volume":"51","author":"C de Graaf","year":"2008","unstructured":"de Graaf C, Rognan D (2008) Selective structure-based virtual screening for full and partial agonists of the \u03b22 adrenergic receptor. J Med Chem 51:4978\u20134985. https:\/\/doi.org\/10.1021\/jm800710x","journal-title":"J Med Chem"},{"key":"654_CR20","doi-asserted-by":"publisher","first-page":"2243","DOI":"10.1021\/ci5002857","volume":"54","author":"A Ciancetta","year":"2014","unstructured":"Ciancetta A, Cuzzolin A, Moro S (2014) Alternative quality assessment strategy to compare performances of GPCR-ligand docking protocols: the human adenosine A2A receptor as a case study. J Chem Inf Model 54:2243\u20132254. https:\/\/doi.org\/10.1021\/ci5002857","journal-title":"J Chem Inf Model"},{"key":"654_CR21","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0174719","volume":"12","author":"T Coudrat","year":"2017","unstructured":"Coudrat T, Christopoulos A, Sexton PM, Wootten D (2017) Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening. PLoS ONE 12:e0174719. https:\/\/doi.org\/10.1371\/journal.pone.0174719","journal-title":"PLoS ONE"},{"key":"654_CR22","doi-asserted-by":"publisher","first-page":"28288","DOI":"10.1038\/srep28288","volume":"6","author":"AJ Kooistra","year":"2016","unstructured":"Kooistra AJ, Vischer HF, McNaught-Flores D et al (2016) Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci Rep 6:28288. https:\/\/doi.org\/10.1038\/srep28288","journal-title":"Sci Rep"},{"key":"654_CR23","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1007\/164_2016_64","volume-title":"Pharmacology and therapeutics of asthma and COPD","author":"CK Billington","year":"2016","unstructured":"Billington CK, Penn RB, Hall IP (2016) \u03b22 agonists. In: Page CP, Barnes PJ (eds) Pharmacology and therapeutics of asthma and COPD. Springer International Publishing, Cham, pp 23\u201340"},{"key":"654_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1097\/MCP.0b013e328333def8","volume":"16","author":"NA Hanania","year":"2010","unstructured":"Hanania NA, Dickey BF, Bond RA (2010) Clinical implications of the intrinsic efficacy of beta-adrenoceptor drugs in asthma: full, partial and inverse agonism. Curr Opin Pulm Med 16:1\u20135. https:\/\/doi.org\/10.1097\/MCP.0b013e328333def8","journal-title":"Curr Opin Pulm Med"},{"key":"654_CR25","doi-asserted-by":"publisher","DOI":"10.4137\/CCRPM.S7211","author":"S Ejiofor","year":"2013","unstructured":"Ejiofor S, Turner AM (2013) Pharmacotherapies for COPD. Clin Med Insights Circ Respir Pulm Med. https:\/\/doi.org\/10.4137\/CCRPM.S7211","journal-title":"Clin Med Insights Circ Respir Pulm Med"},{"key":"654_CR26","doi-asserted-by":"publisher","first-page":"317","DOI":"10.1038\/sj.bjp.0706048","volume":"144","author":"JG Baker","year":"2005","unstructured":"Baker JG (2005) The selectivity of \u03b2 -adrenoceptor antagonists at the human \u03b2 1, \u03b2 2 and \u03b2 3 adrenoceptors: \u03b2 -Blockers and \u03b2 -adrenoceptor selectivity. Br J Pharmacol 144:317\u2013322. https:\/\/doi.org\/10.1038\/sj.bjp.0706048","journal-title":"Br J Pharmacol"},{"key":"654_CR27","doi-asserted-by":"publisher","first-page":"34736","DOI":"10.1038\/srep34736","volume":"6","author":"HCS Chan","year":"2016","unstructured":"Chan HCS, Filipek S, Yuan S (2016) The Principles of Ligand Specificity on beta-2-adrenergic receptor. Sci Rep 6:34736. https:\/\/doi.org\/10.1038\/srep34736","journal-title":"Sci Rep"},{"key":"654_CR28","doi-asserted-by":"publisher","first-page":"5933","DOI":"10.3390\/ijms21165933","volume":"21","author":"M Torrens-Fontanals","year":"2020","unstructured":"Torrens-Fontanals M, Stepniewski TM, Aranda-Garc\u00eda D et al (2020) How do molecular dynamics data complement static structural data of GPCRs. IJMS 21:5933. https:\/\/doi.org\/10.3390\/ijms21165933","journal-title":"IJMS"},{"key":"654_CR29","doi-asserted-by":"publisher","first-page":"851","DOI":"10.1124\/mol.119.117515","volume":"96","author":"MM Scharf","year":"2019","unstructured":"Scharf MM, B\u00fcnemann M, Baker JG, Kolb P (2019) Comparative docking to distinct g protein-coupled receptor conformations exclusively yields ligands with agonist efficacy. Mol Pharmacol 96:851\u2013861. https:\/\/doi.org\/10.1124\/mol.119.117515","journal-title":"Mol Pharmacol"},{"key":"654_CR30","doi-asserted-by":"publisher","first-page":"1443","DOI":"10.1162\/089976601750264965","volume":"13","author":"B Sch\u00f6lkopf","year":"2001","unstructured":"Sch\u00f6lkopf B, Platt JC, Shawe-Taylor J et al (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443\u20131471. https:\/\/doi.org\/10.1162\/089976601750264965","journal-title":"Neural Comput"},{"key":"654_CR31","doi-asserted-by":"publisher","first-page":"936","DOI":"10.3390\/biom11070936","volume":"11","author":"Y Wu","year":"2021","unstructured":"Wu Y, Zeng L, Zhao S (2021) Ligands of adrenergic receptors: a structural point of view. Biomolecules 11:936. https:\/\/doi.org\/10.3390\/biom11070936","journal-title":"Biomolecules"},{"key":"654_CR32","doi-asserted-by":"publisher","first-page":"777","DOI":"10.1038\/s41592-020-0884-y","volume":"17","author":"I Rodr\u00edguez-Espigares","year":"2020","unstructured":"Rodr\u00edguez-Espigares I, Torrens-Fontanals M, Tiemann JKS et al (2020) GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat Methods 17:777\u2013787. https:\/\/doi.org\/10.1038\/s41592-020-0884-y","journal-title":"Nat Methods"},{"key":"654_CR33","doi-asserted-by":"publisher","first-page":"18684","DOI":"10.1073\/pnas.1110499108","volume":"108","author":"RO Dror","year":"2011","unstructured":"Dror RO, Arlow DH, Maragakis P et al (2011) Activation mechanism of the \u03b22-adrenergic receptor. Proc Natl Acad Sci USA 108:18684\u201318689. https:\/\/doi.org\/10.1073\/pnas.1110499108","journal-title":"Proc Natl Acad Sci USA"},{"key":"654_CR34","doi-asserted-by":"publisher","first-page":"575","DOI":"10.1038\/nature12572","volume":"502","author":"AM Ring","year":"2013","unstructured":"Ring AM, Manglik A, Kruse AC et al (2013) Adrenaline-activated structure of \u03b22-adrenoceptor stabilized by an engineered nanobody. Nature 502:575\u2013579. https:\/\/doi.org\/10.1038\/nature12572","journal-title":"Nature"},{"key":"654_CR35","doi-asserted-by":"publisher","first-page":"532","DOI":"10.1016\/j.cell.2013.01.008","volume":"152","author":"R Nygaard","year":"2013","unstructured":"Nygaard R, Zou Y, Dror RO et al (2013) The dynamic process of \u03b22-adrenergic receptor activation. Cell 152:532\u2013542. https:\/\/doi.org\/10.1016\/j.cell.2013.01.008","journal-title":"Cell"},{"key":"654_CR36","doi-asserted-by":"publisher","first-page":"623","DOI":"10.1021\/ci300566n","volume":"53","author":"J Desaphy","year":"2013","unstructured":"Desaphy J, Raimbaud E, Ducrot P, Rognan D (2013) Encoding protein-ligand interaction patterns in fingerprints and graphs. J Chem Inf Model 53:623\u2013637. https:\/\/doi.org\/10.1021\/ci300566n","journal-title":"J Chem Inf Model"},{"key":"654_CR37","doi-asserted-by":"publisher","first-page":"6","DOI":"10.1007\/s41109-019-0195-3","volume":"5","author":"NM Kriege","year":"2020","unstructured":"Kriege NM, Johansson FD, Morris C (2020) A survey on graph kernels. Appl Netw Sci 5:6. https:\/\/doi.org\/10.1007\/s41109-019-0195-3","journal-title":"Appl Netw Sci"},{"key":"654_CR38","unstructured":"Borgwardt KM, Kriegel H (2005) Shortest-Path Kernels on Graphs. In: Fifth IEEE International Conference on Data Mining (ICDM\u201905). IEEE, Houston, TX, USA, pp 74\u201381"},{"key":"654_CR39","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1017\/S026988891300043X","volume":"29","author":"SS Khan","year":"2014","unstructured":"Khan SS, Madden MG (2014) One-class classification: taxonomy of study and review of techniques. The Knowledge Engineering Review 29:345\u2013374. https:\/\/doi.org\/10.1017\/S026988891300043X","journal-title":"The Knowledge Engineering Review"},{"key":"654_CR40","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1186\/s40537-021-00514-x","volume":"8","author":"N Seliya","year":"2021","unstructured":"Seliya N, Abdollah Zadeh A, Khoshgoftaar TM (2021) A literature review on one-class classification and its potential applications in big data. J Big Data 8:122. https:\/\/doi.org\/10.1186\/s40537-021-00514-x","journal-title":"J Big Data"},{"key":"654_CR41","doi-asserted-by":"publisher","first-page":"6728","DOI":"10.1016\/j.bmcl.2011.09.051","volume":"21","author":"PV Karpov","year":"2011","unstructured":"Karpov PV, Osolodkin DI, Baskin II et al (2011) One-class classification as a novel method of ligand-based virtual screening: the case of glycogen synthase kinase 3\u03b2 inhibitors. Bioorg Med Chem Lett 21:6728\u20136731. https:\/\/doi.org\/10.1016\/j.bmcl.2011.09.051","journal-title":"Bioorg Med Chem Lett"},{"key":"654_CR42","doi-asserted-by":"publisher","DOI":"10.3389\/fphar.2022.870479","volume":"13","author":"R Aguti","year":"2022","unstructured":"Aguti R, Gardini E, Bertazzo M et al (2022) Probabilistic pocket druggability prediction via one-class learning. Front Pharmacol 13:870479. https:\/\/doi.org\/10.3389\/fphar.2022.870479","journal-title":"Front Pharmacol"},{"key":"654_CR43","doi-asserted-by":"publisher","first-page":"1702","DOI":"10.1039\/D0SC04263C","volume":"12","author":"A Vriza","year":"2021","unstructured":"Vriza A, Canaj AB, Vismara R et al (2021) One class classification as a practical approach for accelerating \u03c0\u2013\u03c0 co-crystal discovery. Chem Sci 12:1702\u20131719. https:\/\/doi.org\/10.1039\/D0SC04263C","journal-title":"Chem Sci"},{"key":"654_CR44","doi-asserted-by":"crossref","unstructured":"Liu FT, Ting KM, Zhou Z-H (2008) Isolation Forest. In: 2008 Eighth IEEE International Conference on Data Mining. IEEE, Pisa, Italy, pp 413\u2013422","DOI":"10.1109\/ICDM.2008.17"},{"key":"654_CR45","doi-asserted-by":"crossref","unstructured":"Emmott AF, Das S, Dietterich T, et al (2013) Systematic construction of anomaly detection benchmarks from real data. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description\u2014ODD \u201913. ACM Press, Chicago, Illinois, pp 16\u201321","DOI":"10.1145\/2500853.2500858"},{"key":"654_CR46","doi-asserted-by":"publisher","first-page":"5057","DOI":"10.1109\/TNNLS.2017.2785792","volume":"29","author":"Z Ghafoori","year":"2018","unstructured":"Ghafoori Z, Erfani SM, Rajasegarar S et al (2018) Efficient Unsupervised Parameter Estimation for One-Class Support Vector Machines. IEEE Trans Neural Netw Learning Syst 29:5057\u20135070. https:\/\/doi.org\/10.1109\/TNNLS.2017.2785792","journal-title":"IEEE Trans Neural Netw Learning Syst"},{"key":"654_CR47","doi-asserted-by":"publisher","first-page":"669","DOI":"10.1007\/s10822-016-9930-3","volume":"30","author":"I Slynko","year":"2016","unstructured":"Slynko I, Da Silva F, Bret G, Rognan D (2016) Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015. J Comput Aided Mol Des 30:669\u2013683. https:\/\/doi.org\/10.1007\/s10822-016-9930-3","journal-title":"J Comput Aided Mol Des"},{"key":"654_CR48","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1038\/nature09648","volume":"469","author":"SGF Rasmussen","year":"2011","unstructured":"Rasmussen SGF, Choi H-J, Fung JJ et al (2011) Structure of a nanobody-stabilized active state of the \u03b22 adrenoceptor. Nature 469:175\u2013180. https:\/\/doi.org\/10.1038\/nature09648","journal-title":"Nature"},{"key":"654_CR49","unstructured":"Nguyen H, Swails J, Roe DR, Cody (2017) Amber-Md\/Pytraj: V2.0.0. Zenodo"},{"key":"654_CR50","doi-asserted-by":"publisher","first-page":"3084","DOI":"10.1021\/ct400341p","volume":"9","author":"DR Roe","year":"2013","unstructured":"Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084\u20133095. https:\/\/doi.org\/10.1021\/ct400341p","journal-title":"J Chem Theory Comput"},{"key":"654_CR51","first-page":"1","volume":"21","author":"G Siglidis","year":"2020","unstructured":"Siglidis G, Nikolentzos G, Limnios S et al (2020) GraKeL: a graph kernel library in Python. J Mach Learn Res 21:1\u20135","journal-title":"J Mach Learn Res"},{"key":"654_CR52","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825\u20132830","journal-title":"J Mach Learn Res"},{"key":"654_CR53","doi-asserted-by":"crossref","unstructured":"Satopaa V, Albrecht J, Irwin D, Raghavan B (2011) Finding a \u201cKneedle\u201d in a Haystack: Detecting Knee Points in System Behavior. In: 2011 31st International Conference on Distributed Computing Systems Workshops. pp 166\u2013171","DOI":"10.1109\/ICDCSW.2011.20"},{"key":"654_CR54","doi-asserted-by":"publisher","first-page":"261","DOI":"10.1038\/s41592-019-0686-2","volume":"17","author":"P Virtanen","year":"2020","unstructured":"Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261\u2013272. https:\/\/doi.org\/10.1038\/s41592-019-0686-2","journal-title":"Nat Methods"},{"key":"654_CR55","doi-asserted-by":"publisher","unstructured":"Hoang G, Bouzerdoum A, Lam S (2009) Learning pattern classification tasks with imbalanced data sets. In: Yin P-Y (ed) Pattern Recognition. InTech. https:\/\/doi.org\/10.5772\/7544","DOI":"10.5772\/7544"},{"key":"654_CR56","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1016\/j.patcog.2018.10.026","volume":"88","author":"A Adolfsson","year":"2019","unstructured":"Adolfsson A, Ackerman M, Brownstein NC (2019) To cluster, or not to cluster: an analysis of clusterability methods. Pattern Recogn 88:13\u201326. https:\/\/doi.org\/10.1016\/j.patcog.2018.10.026","journal-title":"Pattern Recogn"},{"key":"654_CR57","doi-asserted-by":"publisher","DOI":"10.1155\/2015\/916240","volume":"2015","author":"R De Paris","year":"2015","unstructured":"De Paris R, Quevedo CV, Ruiz DD et al (2015) Clustering molecular dynamics trajectories for optimizing docking experiments. Comput Intell Neurosci 2015:e916240. https:\/\/doi.org\/10.1155\/2015\/916240","journal-title":"Comput Intell Neurosci"},{"key":"654_CR58","doi-asserted-by":"publisher","first-page":"3336","DOI":"10.1016\/j.eswa.2008.01.039","volume":"36","author":"H-S Park","year":"2009","unstructured":"Park H-S, Jun C-H (2009) A simple and fast algorithm for K-medoids clustering. Expert Syst Appl 36:3336\u20133341. https:\/\/doi.org\/10.1016\/j.eswa.2008.01.039","journal-title":"Expert Syst Appl"},{"key":"654_CR59","doi-asserted-by":"publisher","first-page":"D945","DOI":"10.1093\/nar\/gkw1074","volume":"45","author":"A Gaulton","year":"2017","unstructured":"Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945\u2013D954. https:\/\/doi.org\/10.1093\/nar\/gkw1074","journal-title":"Nucleic Acids Res"},{"key":"654_CR60","doi-asserted-by":"publisher","first-page":"2072","DOI":"10.1021\/jm00119a004","volume":"31","author":"N El Tayar","year":"1988","unstructured":"El Tayar N, Carrupt PA, Van de Waterbeemd H, Testa B (1988) Modeling of.beta.-adrenoceptors based on molecular electrostatic potential studies of agonists and antagonists. J Med Chem 31:2072\u20132081. https:\/\/doi.org\/10.1021\/jm00119a004","journal-title":"J Med Chem"},{"key":"654_CR61","doi-asserted-by":"publisher","first-page":"792","DOI":"10.1021\/jm00372a016","volume":"27","author":"MC Carre","year":"1984","unstructured":"Carre MC, Youlassani A, Caubere P (1984) Synthesis of a novel series of (aryloxy)propanolamines: new selective.beta.2-blocking agents. J Med Chem 27:792\u2013799. https:\/\/doi.org\/10.1021\/jm00372a016","journal-title":"J Med Chem"},{"key":"654_CR62","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1021\/jm00188a019","volume":"22","author":"CR Crooks","year":"1979","unstructured":"Crooks CR, Wright J, Callery PS, Moreton JE (1979) Synthesis and preliminary biological studies of 4- and 5-[2-hydroxy-3-(isopropylamino)propoxy]benzimidazoles: selective \u03b22 adrenergic blocking agents. J Med Chem 22:210\u2013214. https:\/\/doi.org\/10.1021\/jm00188a019","journal-title":"J Med Chem"},{"key":"654_CR63","doi-asserted-by":"publisher","first-page":"D335","DOI":"10.1093\/nar\/gkaa1080","volume":"49","author":"AJ Kooistra","year":"2021","unstructured":"Kooistra AJ, Mordalski S, P\u00e1ndy-Szekeres G et al (2021) GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Res 49:D335\u2013D343. https:\/\/doi.org\/10.1093\/nar\/gkaa1080","journal-title":"Nucleic Acids Res"},{"key":"654_CR64","doi-asserted-by":"publisher","unstructured":"Altosaar K, Balaji P, Bond RA, et al (2021) Adrenoceptors in GtoPdb v.2021.3. GtoPdb CITE 2021. https:\/\/doi.org\/10.2218\/gtopdb\/F4\/2021.3","DOI":"10.2218\/gtopdb\/F4\/2021.3"},{"key":"654_CR65","unstructured":"Landrum G, Tosco P, Kelley B, et al (2022) rdkit\/rdkit: 2022_03_2 (Q1 2022) Release. Zenodo"},{"key":"654_CR66","doi-asserted-by":"publisher","first-page":"1000","DOI":"10.1021\/ci00020a039","volume":"34","author":"J Sadowski","year":"1994","unstructured":"Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 x-ray structures. J Chem Inf Comput Sci 34:1000\u20131008. https:\/\/doi.org\/10.1021\/ci00020a039","journal-title":"J Chem Inf Comput Sci"},{"key":"654_CR67","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1021\/ci800298z","volume":"49","author":"O Korb","year":"2009","unstructured":"Korb O, St\u00fctzle T, Exner TE (2009) Empirical scoring functions for advanced protein\u2212ligand docking with PLANTS. J Chem Inf Model 49:84\u201396. https:\/\/doi.org\/10.1021\/ci800298z","journal-title":"J Chem Inf Model"}],"container-title":["Journal of Cheminformatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13321-022-00654-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1186\/s13321-022-00654-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13321-022-00654-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,29]],"date-time":"2022-10-29T05:08:15Z","timestamp":1667020095000},"score":1,"resource":{"primary":{"URL":"https:\/\/jcheminf.biomedcentral.com\/articles\/10.1186\/s13321-022-00654-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,29]]},"references-count":67,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2022,12]]}},"alternative-id":["654"],"URL":"https:\/\/doi.org\/10.1186\/s13321-022-00654-z","relation":{},"ISSN":["1758-2946"],"issn-type":[{"value":"1758-2946","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,10,29]]},"assertion":[{"value":"17 August 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 October 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 October 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"74"}}