{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T04:33:42Z","timestamp":1726374822501},"reference-count":129,"publisher":"Sociedade Brasileira de Computacao - SB","issue":"1","license":[{"start":{"date-parts":[[2020,10,19]],"date-time":"2020-10-19T00:00:00Z","timestamp":1603065600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2020,10,19]],"date-time":"2020-10-19T00:00:00Z","timestamp":1603065600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["J Internet Serv Appl"],"published-print":{"date-parts":[[2020,12]]},"abstract":"Abstract<\/jats:title>In this paper we focus on knowledge extraction from large-scale wireless networks through stream processing. We present the primary methods for sampling, data collection, and monitoring of wireless networks and we characterize knowledge extraction as a machine learning problem on big data stream processing. We show the main trends in big data stream processing frameworks. Additionally, we explore the data preprocessing, feature engineering, and the machine learning algorithms applied to the scenario of wireless network analytics. We address challenges and present research projects in wireless network monitoring and stream processing. Finally, future perspectives, such as deep learning and reinforcement learning in stream processing, are anticipated.<\/jats:p>","DOI":"10.1186\/s13174-020-00127-2","type":"journal-article","created":{"date-parts":[[2020,10,19]],"date-time":"2020-10-19T00:03:06Z","timestamp":1603065786000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":20,"title":["A survey on data analysis on large-Scale wireless networks: online stream processing, trends, and challenges"],"prefix":"10.5753","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0361-5903","authenticated-orcid":false,"given":"Dianne S. V.","family":"Medeiros","sequence":"first","affiliation":[]},{"given":"Helio N.","family":"Cunha Neto","sequence":"additional","affiliation":[]},{"given":"Martin Andreoni","family":"Lopez","sequence":"additional","affiliation":[]},{"given":"Luiz Claudio","family":"S. Magalh\u00e3es","sequence":"additional","affiliation":[]},{"given":"Natalia C.","family":"Fernandes","sequence":"additional","affiliation":[]},{"given":"Alex B.","family":"Vieira","sequence":"additional","affiliation":[]},{"given":"Edelberto F.","family":"Silva","sequence":"additional","affiliation":[]},{"given":"Diogo M.","family":"F. Mattos","sequence":"additional","affiliation":[]}],"member":"3742","published-online":{"date-parts":[[2020,10,19]]},"reference":[{"issue":"1","key":"127_CR1","doi-asserted-by":"publisher","first-page":"6","DOI":"10.1186\/s13174-019-0106-y","volume":"10","author":"D Mattos","year":"2019","unstructured":"Mattos D, Velloso P, Duarte O. An agile and effective network function virtualization infrastructure for the internet of things. J Internet Serv Appl. 2019; 10(1):6. https:\/\/doi.org\/10.1186\/s13174-019-0106-y.","journal-title":"J Internet Serv Appl"},{"key":"127_CR2","first-page":"1","volume":"148668050332836","author":"V Cisco","year":"2019","unstructured":"Cisco V. Global mobile data traffic forecast update, 2017\u20132022 white paper. Doc ID. 2019; 1486680503328360:1\u201333.","journal-title":"Doc ID"},{"issue":"7","key":"127_CR3","doi-asserted-by":"publisher","first-page":"1783","DOI":"10.1007\/s11276-013-0558-0","volume":"19","author":"G Divgi","year":"2013","unstructured":"Divgi G, Chlebus E. Characterization of user activity and traffic in a commercial nationwide wi-fi hotspot network: global and individual metrics. Wirel Netw. 2013; 19(7):1783\u2013805. https:\/\/doi.org\/10.1007\/s11276-013-0558-0.","journal-title":"Wirel Netw"},{"key":"127_CR4","volume-title":"Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing MobiHoc \u201915","author":"B Cici","year":"2015","unstructured":"Cici B, Gjoka M, Markopoulou A, Butts C. On the decomposition of cell phone activity patterns and their connection with urban ecology. In: Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing MobiHoc \u201915. New York: Association for Computing Machinery: 2015. p. 317\u201326."},{"key":"127_CR5","volume-title":"2017 European Navigation Conference (ENC)","author":"A Alessandrini","year":"2017","unstructured":"Alessandrini A, Gioia C, Sermi F, Sofos I, Tarchi D, Vespe M. Wifi positioning and big data to monitor flows of people on a wide scale. In: 2017 European Navigation Conference (ENC). Lausanne: IEEE: 2017. p. 322\u20138."},{"key":"127_CR6","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1016\/j.procs.2015.04.188","volume":"48","author":"J Anuradha","year":"2015","unstructured":"Ishwarappa, Anuradha J. A brief introduction on big data 5vs characteristics and hadoop technology. Procedia Comput Sci. 2015; 48:319\u201324. International Conference on Computer, Communication and Convergence (ICCC 2015).","journal-title":"Procedia Comput Sci"},{"key":"127_CR7","doi-asserted-by":"publisher","unstructured":"Jang R, Cho D, Noh Y, Nyang D. Rflow+: An sdn-based wlan monitoring and management framework. In: IEEE INFOCOM 2017 - IEEE Conference on Computer Communications: 2017. p. 1\u20139. https:\/\/doi.org\/10.1109\/INFOCOM.2017.8056995.","DOI":"10.1109\/INFOCOM.2017.8056995"},{"key":"127_CR8","volume-title":"XXIV ACM Symposium on Operating Systems Principles","author":"M Zaharia","year":"2013","unstructured":"Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I. Discretized streams: Fault-tolerant streaming computation at scale. In: XXIV ACM Symposium on Operating Systems Principles. New York: Association for Computing Machinery: 2013. p. 423\u201338. ACM."},{"issue":"34","key":"127_CR9","first-page":"28","volume":"4","author":"P Carbone","year":"2015","unstructured":"Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi\u2020 S, Tzoumas K. Apache flink: Stream and batch processing in a single engine. Bulletin IEEE Comput Soc Tech Comm Data Eng. 2015; 4(34):28\u201338.","journal-title":"Bulletin IEEE Comput Soc Tech Comm Data Eng"},{"key":"127_CR10","doi-asserted-by":"publisher","unstructured":"Andreoni Lopez M, Mattos D, Duarte O, Pujolle G. A fast unsupervised preprocessing method for network monitoring. Ann Telecommuns. 2019; 74. https:\/\/doi.org\/10.1007\/s12243-018-0663-2.","DOI":"10.1007\/s12243-018-0663-2"},{"issue":"3","key":"127_CR11","doi-asserted-by":"publisher","first-page":"2093","DOI":"10.1007\/s11277-018-5916-x","volume":"102","author":"J Guo","year":"2018","unstructured":"Guo J, Tan Z-H, Cho S, Zhang G. Wireless personal communications: Machine learning for big data processing in mobile internet. Wirel Pers Commun. 2018; 102(3):2093\u20138. https:\/\/doi.org\/10.1007\/s11277-018-5916-x.","journal-title":"Wirel Pers Commun"},{"key":"127_CR12","doi-asserted-by":"publisher","unstructured":"Acer U, Boran A, Forlivesi C, Liekens W, P\u00e9rez-cruz F, Kawsar F. Sensing wifi network for personal IoT analytics. In: 5th International Conference on the Internet of Things: 2015. p. 104\u201311. https:\/\/doi.org\/10.1109\/IOT.2015.7356554.","DOI":"10.1109\/IOT.2015.7356554"},{"key":"127_CR13","volume-title":"3rd International Workshop on Physical Analytics","author":"U Acer","year":"2016","unstructured":"Acer U, Vanderhulst G, Masshadi A, Boran A, Forlivesi C, Scholl P, Kawsar F. Capturing personal and crowd behavior with wi-fi analytics. In: 3rd International Workshop on Physical Analytics. New York: Association for Computing Machinery: 2016. p. 43\u20138. ACM."},{"key":"127_CR14","volume-title":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","author":"B G\u00f3mez","year":"2020","unstructured":"G\u00f3mez B, Coronado E, Villal\u00f3n J, Riggio R, Garrido A. User association in software-defined wi-fi networks for enhanced resource allocation. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC). Seoul: IEEE: 2020. p. 1\u20137."},{"key":"127_CR15","volume-title":"2012 Global Information Infrastructure and Networking Symposium (GIIS)","author":"H Balbi","year":"2012","unstructured":"Balbi H, Fernandes N, Souza F, Carrano R, Albuquerque C, Muchaluat-Saade D, Magalhaes L. Centralized channel allocation algorithm for IEEE 802.11 networks. In: 2012 Global Information Infrastructure and Networking Symposium (GIIS). Choroni: IEEE: 2012. p. 1\u20137."},{"key":"127_CR16","volume-title":"NOMS 2018 - 2018 IEEE\/IFIP Network Operations and Management Symposium","author":"E Coronado","year":"2018","unstructured":"Coronado E, Riggio R, Villal\u00f3n J, Garrido A. Wi-balance: Channel-aware user association in software-defined wi-fi networks. In: NOMS 2018 - 2018 IEEE\/IFIP Network Operations and Management Symposium. Taipei: IEEE: 2018. p. 1\u20139."},{"issue":"1","key":"127_CR17","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1109\/MWC.2016.1500131WC","volume":"24","author":"G Xu","year":"2017","unstructured":"Xu G, Gao S, Daneshmand M, Wang C, Liu Y. A survey for mobility big data analytics for geolocation prediction. IEEE Wirel Commun. 2017; 24(1):111\u20139.","journal-title":"IEEE Wirel Commun"},{"key":"127_CR18","doi-asserted-by":"crossref","unstructured":"Chen Y, Guizani M, Zhang Y, Wang L, Crespi N, Lee G, Wu T. When traffic flow prediction and wireless big data analytics meet. IEEE Netw. 2018;:161\u2013167.","DOI":"10.1109\/MNET.2018.1800134"},{"key":"127_CR19","volume-title":"2019 Sixth International Conference on Software Defined Systems (SDS)","author":"P Isolani","year":"2019","unstructured":"Isolani P, Cardona N, Donato C, Marquez-Barja J, Granville L, Latr\u00e9 S. SDN-based slice orchestration and MAC management for QoS delivery. In: 2019 Sixth International Conference on Software Defined Systems (SDS). Rome: IEEE: 2019. p. 260\u20135."},{"key":"127_CR20","doi-asserted-by":"publisher","DOI":"10.1145\/2739480.2754663","volume-title":"Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation GECCO \u201915","author":"T Luiz","year":"2015","unstructured":"Luiz T, Freitas A, Guimar\u00e3es F. A new perspective on channel allocation in wlan: Considering the total marginal utility of the connections for the users. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation GECCO \u201915. New York: ACM: 2015. p. 879\u201386. https:\/\/doi.org\/10.1145\/2739480.2754663."},{"key":"127_CR21","doi-asserted-by":"publisher","unstructured":"Leung K, Kim B. Frequency assignment for IEEE 802.11 wireless networks. In: 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484): 2003. p. 1422\u201363. https:\/\/doi.org\/10.1109\/VETECF.2003.1285259.","DOI":"10.1109\/VETECF.2003.1285259"},{"key":"127_CR22","volume-title":"2017 13th Annual Conference on Wireless On-demand Network Systems and Services(WONS)","author":"F Maturi","year":"2017","unstructured":"Maturi F, Gringoli F, Cigno R. A dynamic and autonomous channel selection strategy for interference avoidance in 802.11. In: 2017 13th Annual Conference on Wireless On-demand Network Systems and Services(WONS). Jackson: IEEE: 2017. p. 1\u20138."},{"issue":"99","key":"127_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/JSYST.2017.2687102","volume":"PP","author":"F Lin","year":"2017","unstructured":"Lin F, Wen Y, Fang L, Hsiao C. Resource allocation and multisession routing algorithms in coordinated multipoint wireless communication networks. IEEE Syst J. 2017; PP(99):1\u201312. https:\/\/doi.org\/10.1109\/JSYST.2017.2687102.","journal-title":"IEEE Syst J"},{"key":"127_CR24","volume-title":"Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services MobiSys \u201904","author":"M Shin","year":"2004","unstructured":"Shin M, Mishra A, Arbaugh W. Improving the latency of 802.11 hand-offs using neighbor graphs. In: Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services MobiSys \u201904. New York: ACM: 2004. p. 70\u201383."},{"issue":"4","key":"127_CR25","doi-asserted-by":"publisher","first-page":"1522","DOI":"10.1109\/TNSM.2019.2948883","volume":"16","author":"E Zeljkovi\u0107","year":"2019","unstructured":"Zeljkovi\u0107 E, Slamnik-Krije\u0161torac N, Latr\u00e9 S, Marquez-Barja J. Abraham: Machine learning backed proactive handover algorithm using sdn. IEEE Trans Netw Serv Manag. 2019; 16(4):1522\u201336.","journal-title":"IEEE Trans Netw Serv Manag"},{"issue":"1","key":"127_CR26","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1109\/TST.2014.6733212","volume":"19","author":"W Huang","year":"2014","unstructured":"Huang W, Chen Z, Dong W, Li H, Cao B, Cao J. Mobile internet big data platform in china unicom. Tsinghua Sci Technol. 2014; 19(1):95\u2013101.","journal-title":"Tsinghua Sci Technol"},{"key":"127_CR27","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1016\/j.comnet.2018.01.016","volume":"132","author":"M Hadi","year":"2018","unstructured":"Hadi M, Lawey A, El-Gorashi T, Elmirghani J. Big data analytics for wireless and wired network design: A survey. Comput Netw. 2018; 132:180\u201399.","journal-title":"Comput Netw"},{"issue":"2","key":"127_CR28","doi-asserted-by":"publisher","first-page":"320","DOI":"10.1109\/TMC.2017.2709743","volume":"17","author":"T Wang","year":"2018","unstructured":"Wang T, Yang Q, Tan K, Zhang J, Liew S, Zhang S. Dcap: Improving the capacity of wifi networks with distributed cooperative access points. IEEE Trans Mob Comput. 2018; 17(2):320\u201333. https:\/\/doi.org\/10.1109\/TMC.2017.2709743.","journal-title":"IEEE Trans Mob Comput"},{"key":"127_CR29","doi-asserted-by":"publisher","first-page":"104","DOI":"10.1016\/j.simpat.2016.03.001","volume":"66","author":"L Ghouti","year":"2016","unstructured":"Ghouti L. Mobility prediction in mobile ad hoc networks using neural learning machines. Simul Model Pract Theory. 2016; 66:104\u201321. https:\/\/doi.org\/10.1016\/j.simpat.2016.03.001.","journal-title":"Simul Model Pract Theory"},{"key":"127_CR30","volume-title":"12th International Conference on Data Mining","author":"A Noulas","year":"2012","unstructured":"Noulas A, Scellato S, Lathia N, Mascolo C. Mining user mobility features for next place prediction in location-based services. In: 12th International Conference on Data Mining. Brussels: IEEE: 2012. p. 1038\u201343."},{"key":"127_CR31","volume-title":"Proceedings of the 7th ACM SIGSPATIAL International Workshop on GeoStreaming IWGS \u201916","author":"V Kulkarni","year":"2016","unstructured":"Kulkarni V, Moro A, Garbinato B. Mobidict: A mobility prediction system leveraging realtime location data streams. In: Proceedings of the 7th ACM SIGSPATIAL International Workshop on GeoStreaming IWGS \u201916. New York: Association for Computing Machinery: 2016."},{"key":"127_CR32","volume-title":"2016 International Wireless Communications and Mobile Computing Conference (IWCMC)","author":"D Stynes","year":"2016","unstructured":"Stynes D, Brown K, Sreenan C. A probabilistic approach to user mobility prediction for wireless services. In: 2016 International Wireless Communications and Mobile Computing Conference (IWCMC). Paphos: IEEE: 2016. p. 120\u20135."},{"key":"127_CR33","doi-asserted-by":"publisher","first-page":"802","DOI":"10.1109\/ACCESS.2018.2885821","volume":"7","author":"H Zhang","year":"2019","unstructured":"Zhang H, Dai L. Mobility prediction: A survey on state-of-the-art schemes and future applications. IEEE Access. 2019; 7:802\u201322.","journal-title":"IEEE Access"},{"key":"127_CR34","volume-title":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","author":"S Bozkurt","year":"2015","unstructured":"Bozkurt S, Elibol G, Gunal S, Yayan U. A comparative study on machine learning algorithms for indoor positioning. In: 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA). Madrid: IEEE: 2015. p. 1\u20138."},{"issue":"7196","key":"127_CR35","doi-asserted-by":"publisher","first-page":"779","DOI":"10.1038\/nature06958","volume":"453","author":"M Gonzalez","year":"2008","unstructured":"Gonzalez M, Hidalgo C, Barabasi A-L. Understanding individual human mobility patterns. Nature. 2008; 453(7196):779.","journal-title":"Nature"},{"issue":"5968","key":"127_CR36","doi-asserted-by":"publisher","first-page":"1018","DOI":"10.1126\/science.1177170","volume":"327","author":"C Song","year":"2010","unstructured":"Song C, Qu Z, Blumm N, Barab\u00e1si A-L. Limits of predictability in human mobility. Science. 2010; 327(5968):1018\u201321.","journal-title":"Science"},{"key":"127_CR37","doi-asserted-by":"crossref","unstructured":"Toch E, Lerner B, Ben-Zion E, Ben-Gal I. Analyzing large-scale human mobility data: a survey of machine learning methods and applications. Knowl Inf Syst. 2018:1\u201323.","DOI":"10.1007\/s10115-018-1186-x"},{"issue":"2","key":"127_CR38","doi-asserted-by":"publisher","first-page":"1443","DOI":"10.1109\/TVT.2016.2553182","volume":"66","author":"Y Qiao","year":"2017","unstructured":"Qiao Y, Cheng Y, Yang J, Liu J, Kato N. A mobility analytical framework for big mobile data in densely populated area. IEEE Trans Veh Technol. 2017; 66(2):1443\u201355.","journal-title":"IEEE Trans Veh Technol"},{"issue":"3","key":"127_CR39","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1109\/MCOMSTD.001.1800036","volume":"3","author":"X Lin","year":"2019","unstructured":"Lin X, Li J, Baldemair R, Cheng J, Parkvall S, Larsson D, Koorapaty H, Frenne M, Falahati S, Grovlen A, Werner K. 5G new radio: Unveiling the essentials of the next generation wireless access technology. IEEE Commun Stand Mag. 2019; 3(3):30\u201337.","journal-title":"IEEE Commun Stand Mag"},{"issue":"4","key":"127_CR40","doi-asserted-by":"publisher","first-page":"118","DOI":"10.1109\/MWC.001.1900488","volume":"27","author":"F Tariq","year":"2020","unstructured":"Tariq F, Khandaker M, Wong K, Imran M, Bennis M, Debbah M. A speculative study on 6G. IEEE Wirel Commun. 2020; 27(4):118\u201325.","journal-title":"IEEE Wirel Commun"},{"issue":"2","key":"127_CR41","doi-asserted-by":"publisher","first-page":"98","DOI":"10.1109\/MWC.2016.1500356WC","volume":"24","author":"C Jiang","year":"2017","unstructured":"Jiang C, Zhang H, Ren Y, Han Z, Chen K-C, Hanzo L. Machine learning paradigms for next-generation wireless networks. IEEE Wirel Commun. 2017; 24(2):98\u2013105.","journal-title":"IEEE Wirel Commun"},{"issue":"4","key":"127_CR42","doi-asserted-by":"publisher","first-page":"2037","DOI":"10.1109\/COMST.2014.2321898","volume":"16","author":"R Hofstede","year":"2014","unstructured":"Hofstede R, \u010celeda P, Trammell B, Drago I, Sadre R, Sperotto A, Pras A. Flow monitoring explained: From packet capture to data analysis with netflow and ipfix. IEEE Commun Surv Tutor. 2014; 16(4):2037\u201364.","journal-title":"IEEE Commun Surv Tutor"},{"key":"127_CR43","unstructured":"Case J, Fedor M, Schoffstall M, Davin J. Simple Network Management Protocol (SNMP). RFC. 2011:1157."},{"key":"127_CR44","doi-asserted-by":"crossref","unstructured":"Claise B, Sadasivan G, Valluri V, Djernaes M. Cisco systems netflow services export version 9. RFC. 2004:3954.","DOI":"10.17487\/rfc3954"},{"issue":"2","key":"127_CR45","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1016\/j.jnca.2012.12.020","volume":"36","author":"B Li","year":"2013","unstructured":"Li B, Springer J, Bebis G, Hadi Gunes M. Review: A survey of network flow applications. J Netw Comput Appl. 2013; 36(2):567\u201381. https:\/\/doi.org\/10.1016\/j.jnca.2012.12.020.","journal-title":"J Netw Comput Appl"},{"key":"127_CR46","doi-asserted-by":"crossref","unstructured":"Claise B, Trammell B, Aitken P. Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information. RFC. 2013:7011.","DOI":"10.17487\/rfc7015"},{"issue":"8","key":"127_CR47","doi-asserted-by":"publisher","first-page":"2190","DOI":"10.1587\/transcom.E94.B.2190","volume":"94","author":"N Brownlee","year":"2011","unstructured":"Brownlee N. Flow-based measurement: Ipfix development and deployment. IEICE Trans Commun. 2011; 94(8):2190\u20138.","journal-title":"IEICE Trans Commun"},{"key":"127_CR48","doi-asserted-by":"crossref","unstructured":"Medhi D, Ramasamy K. In: Medhi D, Ramasamy K, (eds).Chapter 11 - routing and traffic engineering in software defined networks, Network Routing (Second Edition). Boston: Morgan Kaufmann; 2018, pp. 378\u201395. https:\/\/doi.org\/10.1016\/B978-0-12-800737-2.00013-2. http:\/\/www.sciencedirect.com\/science\/article\/pii\/B9780128007372000132.","DOI":"10.1016\/B978-0-12-800737-2.00013-2"},{"key":"127_CR49","doi-asserted-by":"crossref","unstructured":"G\u00f6ransson P, Black C, Culver T. Chapter 5 - the openflow specification In: G\u00f6ransson P, Black C, Culver T, editors. Software Defined Networks (Second Edition). Second edition. Boston: Morgan Kaufmann: 2017. p. 89\u2013136. https:\/\/doi.org\/10.1016\/B978-0-12-804555-8.00005-3. http:\/\/www.sciencedirect.com\/science\/article\/pii\/B9780128045558000053.","DOI":"10.1016\/B978-0-12-804555-8.00005-3"},{"key":"127_CR50","volume-title":"2018 IFIP Networking Conference (IFIP Networking) and Workshops","author":"R Kr\u00f6sche","year":"2018","unstructured":"Kr\u00f6sche R, Thimmaraju K, Schiff L, Schmid S. I DPID-It My Way! A Covert Timing Channel in Software-Defined Networks. In: 2018 IFIP Networking Conference (IFIP Networking) and Workshops. Zurich: IEEE: 2018. p. 217\u201325."},{"key":"127_CR51","unstructured":"Kim C, Sivaraman A, Katta N, Bas A, Dixit A, Wobker L. In-band network telemetry via programmable dataplanes. In: ACM SIGCOMM: 2015."},{"key":"127_CR52","volume-title":"7th International Conference on Cloud Networking (CloudNet)","author":"Y Kim","year":"2018","unstructured":"Kim Y, Suh D, Pack S. Selective in-band network telemetry for overhead reduction. In: 7th International Conference on Cloud Networking (CloudNet). Tokyo: IEEE: 2018. p. 1\u20133."},{"issue":"1","key":"127_CR53","doi-asserted-by":"publisher","first-page":"16","DOI":"10.1186\/s13174-018-0087-2","volume":"9","author":"R Boutaba","year":"2018","unstructured":"Boutaba R, Salahuddin M, Limam N, Ayoubi S, Shahriar N, Estrada-Solano F, Caicedo O. A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J Internet Serv Appl. 2018; 9(1):16. https:\/\/doi.org\/10.1186\/s13174-018-0087-2.","journal-title":"J Internet Serv Appl"},{"issue":"33","key":"127_CR54","doi-asserted-by":"publisher","first-page":"8689","DOI":"10.1073\/pnas.1702076114","volume":"114","author":"D Blei","year":"2017","unstructured":"Blei D, Smyth P. Science and data science. Proc Natl Acad Sci. 2017; 114(33):8689\u201392. https:\/\/doi.org\/10.1073\/pnas.1702076114.","journal-title":"Proc Natl Acad Sci"},{"key":"127_CR55","doi-asserted-by":"publisher","first-page":"652","DOI":"10.1109\/ACCESS.2014.2332453","volume":"2","author":"H Hu","year":"2014","unstructured":"Hu H, Wen Y, Chua T, Li X. Toward scalable systems for big data analytics: A technology tutorial. IEEE Access. 2014; 2:652\u201387.","journal-title":"IEEE Access"},{"issue":"20","key":"127_CR56","doi-asserted-by":"publisher","first-page":"5344","DOI":"10.1002\/cpe.5344","volume":"31","author":"M Andreoni Lopez","year":"2019","unstructured":"Andreoni Lopez M, Mattos D, Duarte O, Pujolle G. Toward a monitoring and threat detection system based on stream processing as a virtual network function for big data. Concurr Comput Pract Experience. 2019; 31(20):5344. https:\/\/doi.org\/10.1002\/cpe.5344.","journal-title":"Concurr Comput Pract Experience"},{"key":"127_CR57","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-28608-0","volume-title":"Data Stream Management: Processing High-speed Data Streams","author":"M Garofalakis","year":"2016","unstructured":"Garofalakis M, Gehrke J, Rastogi R. Data Stream Management: Processing High-speed Data Streams, 1st edn. Berlin: Springer; 2016."},{"key":"127_CR58","volume-title":"Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement IMC \u201905","author":"G Lee","year":"2005","unstructured":"Lee G, Liu H, Yoon Y, Zhang Y. Improving sketch reconstruction accuracy using linear least squares method. In: Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement IMC \u201905. Berkeley: USENIX Association: 2005. p. 24\u201324."},{"issue":"1","key":"127_CR59","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1186\/s40537-015-0030-3","volume":"2","author":"C-W Tsai","year":"2015","unstructured":"Tsai C-W, Lai C-F, Chao H-C, Vasilakos A. Big data analytics: a survey. J Big Data. 2015; 2(1):21.","journal-title":"J Big Data"},{"issue":"1","key":"127_CR60","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1186\/s41044-016-0014-0","volume":"1","author":"S Garc\u00eda","year":"2016","unstructured":"Garc\u00eda S, Ram\u00edrez-Gallego S, Luengo J, Ben\u00edtez J, Herrera F. Big data preprocessing: methods and prospects. Big Data Analytics. 2016; 1(1):9.","journal-title":"Big Data Analytics"},{"issue":"1","key":"127_CR61","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1016\/j.compeleceng.2013.11.016","volume":"40","author":"B Tannahill","year":"2014","unstructured":"Tannahill B, Jamshidi M. System of systems and big data analytics\u2013bridging the gap. Comput Electr Eng. 2014; 40(1):2\u201315.","journal-title":"Comput Electr Eng"},{"key":"127_CR62","volume-title":"Data Mining: Concepts and Techniques","author":"J Han","year":"2011","unstructured":"Han J, Pei J, Kamber M. Data Mining: Concepts and Techniques. Massachusetts: Elsevier; 2011."},{"key":"127_CR63","unstructured":"Vafaie H, Imam I. Feature selection methods: genetic algorithms vs. greedy-like search. In: Proceedings of the International Conference on Fuzzy and Intelligent Control Systems, vol. 51. Louisville: 1994. p. 28."},{"issue":"3","key":"127_CR64","doi-asserted-by":"publisher","first-page":"621","DOI":"10.1109\/TIFS.2017.2762828","volume":"13","author":"M Aminanto","year":"2018","unstructured":"Aminanto M, Choi R, Tanuwidjaja H, Yoo P, Kim K. Deep abstraction and weighted feature selection for Wi-Fi impersonation detection. IEEE Trans Inf Forensics Secur. 2018; 13(3):621\u201336.","journal-title":"IEEE Trans Inf Forensics Secur"},{"issue":"2","key":"127_CR65","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1007\/s10994-018-5748-7","volume":"108","author":"I Tsamardinos","year":"2019","unstructured":"Tsamardinos I, Borboudakis G, Katsogridakis P, Pratikakis P, Christophides V. A greedy feature selection algorithm for big data of high dimensionality. Mach Learn. 2019; 108(2):149\u2013202.","journal-title":"Mach Learn"},{"issue":"9","key":"127_CR66","doi-asserted-by":"publisher","first-page":"4031","DOI":"10.1109\/TCYB.2019.2923430","volume":"50","author":"C Wang","year":"2020","unstructured":"Wang C, Huang Y, Shao M, Hu Q, Chen D. Feature selection based on neighborhood self-information. IEEE Trans Cybernet. 2020; 50(9):4031\u201342.","journal-title":"IEEE Trans Cybernet"},{"key":"127_CR67","unstructured":"Ham Y, Lee H-W. Big data preprocessing mechanism for analytics of mobile web log. Int J Adv Soft Comput Appl. 2014;6(1)."},{"issue":"1","key":"127_CR68","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1109\/MIC.2007.21","volume":"11","author":"G Tesauro","year":"2007","unstructured":"Tesauro G. Reinforcement learning in autonomic computing: A manifesto and case studies. IEEE Internet Comput. 2007; 11(1):22\u201330. https:\/\/doi.org\/10.1109\/MIC.2007.21.","journal-title":"IEEE Internet Comput"},{"key":"127_CR69","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.elerap.2016.02.002","volume":"17","author":"X Zhang","year":"2016","unstructured":"Zhang X, Wang C, Li Z, Zhu J, Shi W, Wang Q. Exploring the sequential usage patterns of mobile internet services based on markov models. Electron Commer Res Appl. 2016; 17:1\u201311. https:\/\/doi.org\/10.1016\/j.elerap.2016.02.002.","journal-title":"Electron Commer Res Appl"},{"issue":"5","key":"127_CR70","doi-asserted-by":"publisher","first-page":"1359","DOI":"10.1109\/TNET.2010.2040087","volume":"18","author":"M Afanasyev","year":"2010","unstructured":"Afanasyev M, Chen T, Voelker G, Snoeren A. Usage patterns in an urban wifi network. IEEE\/ACM Trans Netw (ToN). 2010; 18(5):1359\u201372.","journal-title":"IEEE\/ACM Trans Netw (ToN)"},{"issue":"3","key":"127_CR71","doi-asserted-by":"publisher","first-page":"592","DOI":"10.1109\/TKDE.2015.2489657","volume":"28","author":"Y Fan","year":"2016","unstructured":"Fan Y, Chen Y, Tung K, Wu K, Chen A. A framework for enabling user preference profiling through wi-fi logs. IEEE Trans Knowl Data Eng. 2016; 28(3):592\u2013603.","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"127_CR72","volume-title":"Proceedings of the 2016 Conference on Design, Automation & Test in Europe DATE \u201916","author":"H Huang","year":"2016","unstructured":"Huang H, Cai Y, Yu H. Distributed-neuron-network based machine learning on smart-gateway network towards real-time indoor data analytics. In: Proceedings of the 2016 Conference on Design, Automation & Test in Europe DATE \u201916. Dresden: IEEE: 2016. p. 720\u20135."},{"key":"127_CR73","volume-title":"Proceedings of the 17th IEEE International Conference on Mobile Data Management (MDM), vol. 1","author":"C Chilipirea","year":"2016","unstructured":"Chilipirea C, Petre A, Dobre C, van Steen M. Presumably simple: Monitoring crowds using wifi. In: Proceedings of the 17th IEEE International Conference on Mobile Data Management (MDM), vol. 1. Porto: IEEE: 2016. p. 220\u20135."},{"key":"127_CR74","volume-title":"Proceedings of the 2Nd Workshop on Physical Analytics WPA \u201915","author":"Y Zeng","year":"2015","unstructured":"Zeng Y, Pathak P, Mohapatra P. Analyzing shopper\u2019s behavior through wifi signals. In: Proceedings of the 2Nd Workshop on Physical Analytics WPA \u201915. New York: Association for Computing Machinery: 2015. p. 13\u20138."},{"issue":"3","key":"127_CR75","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1109\/MNET.2016.7474340","volume":"30","author":"M Alsheikh","year":"2016","unstructured":"Alsheikh M, Niyato D, Lin S, Tan H-P, Han Z. Mobile big data analytics using deep learning and apache spark. IEEE Netw. 2016; 30(3):22\u20139.","journal-title":"IEEE Netw"},{"key":"127_CR76","volume-title":"Proceedings of the 15th International Conference on Information Processing in Sensor Networks IPSN \u201916","author":"Y Zeng","year":"2016","unstructured":"Zeng Y, Pathak P, Mohapatra P. WiWho: WiFi-Based Person Identification in Smart Spaces. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks IPSN \u201916. Vienna: IEEE: 2016. p. 4\u20131412."},{"issue":"1","key":"127_CR77","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1186\/s13634-016-0355-x","volume":"2016","author":"J Qiu","year":"2016","unstructured":"Qiu J, Wu Q, Ding G, Xu Y, Feng S. A survey of machine learning for big data processing. EURASIP J Adv Sig Process. 2016; 2016(1):67. https:\/\/doi.org\/10.1186\/s13634-016-0355-x.","journal-title":"EURASIP J Adv Sig Process"},{"issue":"4","key":"127_CR78","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1145\/2523813","volume":"46","author":"J Gama","year":"2014","unstructured":"Gama J, \u017eliobait\u0117 I, Bifet A, Pechenizkiy M, Bouchachia A. A survey on concept drift adaptation. ACM Comput Surv (CSUR). 2014; 46(4):44.","journal-title":"ACM Comput Surv (CSUR)"},{"key":"127_CR79","volume-title":"2018 IEEE International Conference on Communications (ICC)","author":"A Lobato","year":"2018","unstructured":"Lobato A, Andreoni Lopez M, Sanz I, Cardenas A, Duarte O, Pujolle G. An adaptive real-time architecture for zero-day threat detection. In: 2018 IEEE International Conference on Communications (ICC). Kansas City: IEEE: 2018. p. 1\u20136."},{"key":"127_CR80","volume-title":"PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM","author":"R Jordaney","year":"2017","unstructured":"Jordaney R, Sharad K, Dash S, Wang Z, Papini D, Nouretdinov I, Cavallaro L. Transcend: Detecting concept drift in malware classification models. In: PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM. Vancouver: USENIX Association: 2017. p. 625\u201342."},{"issue":"1","key":"127_CR81","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1002\/widm.52","volume":"2","author":"M Gaber","year":"2012","unstructured":"Gaber M. Advances in data stream mining. Wiley Interdiscip Rev Data Min Knowl Disc. 2012; 2(1):79\u201385.","journal-title":"Wiley Interdiscip Rev Data Min Knowl Disc"},{"key":"127_CR82","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2013.6706768","volume-title":"The 2013 Int. Joint Conference on Neural Networks (IJCNN)","author":"S Wang","year":"2013","unstructured":"Wang S, Minku L, Ghezzi D, Caltabiano D, Tino P, Yao X. Concept drift detection for online class imbalance learning. In: The 2013 Int. Joint Conference on Neural Networks (IJCNN). Dallas: IEEE: 2013. p. 1\u201310. https:\/\/doi.org\/10.1109\/IJCNN.2013.6706768."},{"key":"127_CR83","doi-asserted-by":"publisher","DOI":"10.1145\/502512.502529","volume-title":"Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD \u201901","author":"G Hulten","year":"2001","unstructured":"Hulten G, Spencer L, Domingos P. Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD \u201901. New York: Association for Computing Machinery: 2001. p. 97\u2013106. https:\/\/doi.org\/10.1145\/502512.502529."},{"key":"127_CR84","doi-asserted-by":"publisher","unstructured":"Godec M, Leistner C, Saffari A, Bischof H. On-line random naive bayes for tracking. In: 2010 20th Int. Conference on Pattern Recognition: 2010. p. 3545\u20138. https:\/\/doi.org\/10.1109\/ICPR.2010.865.","DOI":"10.1109\/ICPR.2010.865"},{"key":"127_CR85","volume-title":"Advanced Data Mining and Applications","author":"J Lu","year":"2006","unstructured":"Lu J, Yang Y, Webb G. Incremental discretization for na\u00efve-bayes classifier In: Li X, Za\u00efane O, Li Z, editors. Advanced Data Mining and Applications. Berlin: Springer: 2006. p. 223\u201338."},{"key":"127_CR86","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1016\/j.neunet.2017.11.003","volume":"98","author":"N Masuyama","year":"2018","unstructured":"Masuyama N, Loo C, Dawood F. Kernel bayesian art and artmap. Neural Netw. 2018; 98:76\u201386.","journal-title":"Neural Netw"},{"issue":"3","key":"127_CR87","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1109\/MCAS.2006.1688199","volume":"6","author":"R Polikar","year":"2006","unstructured":"Polikar R. Ensemble based systems in decision making. IEEE Circ Syst Mag. 2006; 6(3):21\u201345.","journal-title":"IEEE Circ Syst Mag"},{"issue":"4","key":"127_CR88","doi-asserted-by":"publisher","first-page":"497","DOI":"10.1109\/5326.983933","volume":"31","author":"R Polikar","year":"2001","unstructured":"Polikar R, Upda L, Upda S, Honavar V. Learn++: an incremental learning algorithm for supervised neural networks. IEEE Trans Syst Man Cybern Part C Appl Rev. 2001; 31(4):497\u2013508. https:\/\/doi.org\/10.1109\/5326.983933.","journal-title":"IEEE Trans Syst Man Cybern Part C Appl Rev"},{"key":"127_CR89","doi-asserted-by":"publisher","unstructured":"Aaron B, Tamir D, Rishe N, Kandel A. Dynamic incremental k-means clustering. In: 2014 International Conference on Computational Science and Computational Intelligence: 2014. p. 308\u201313. https:\/\/doi.org\/10.1109\/CSCI.2014.60.","DOI":"10.1109\/CSCI.2014.60"},{"key":"127_CR90","unstructured":"Li Y. Deep Reinforcement Learning. arXiv e-prints. 2018:1810\u201306339. http:\/\/arxiv.org\/abs\/1810.06339."},{"key":"127_CR91","volume-title":"2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN)","author":"Y Liu","year":"2017","unstructured":"Liu Y, Yoo S. Dynamic resource allocation using reinforcement learning for LTE-U and WiFi in the unlicensed spectrum. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). Milan: IEEE: 2017. p. 471\u20135."},{"key":"127_CR92","doi-asserted-by":"crossref","unstructured":"Tabrizi H, Farhadi G, Cioffi J. A learning-based network selection method in heterogeneous wireless systems. In: 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011: 2011. p. 1\u20135.","DOI":"10.1109\/GLOCOM.2011.6134269"},{"key":"127_CR93","doi-asserted-by":"crossref","unstructured":"Chen Z, Qiu R. Cooperative spectrum sensing using q-learning with experimental validation. In: 2011 Proceedings of IEEE Southeastcon: 2011. p. 405\u20138.","DOI":"10.1109\/SECON.2011.5752975"},{"key":"127_CR94","volume-title":"Proceedings of the International Conference on Systems, Signals and Image Processing (IWSSIP)","author":"R Santos Filho","year":"2020","unstructured":"Santos Filho R, Ferreira T, Mattos D, Medeiros D. A lightweight reinforcement-learning-based mechanism for bandwidth provisioning on multitenant data center. In: Proceedings of the International Conference on Systems, Signals and Image Processing (IWSSIP). Niter\u00f3i: IEEE: 2020. p. 1\u20138."},{"issue":"3-4","key":"127_CR95","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1561\/2000000039","volume":"7","author":"L Deng","year":"2014","unstructured":"Deng L, Yu D. Deep learning: Methods and applications. Found Trends Sig Process. 2014; 7(3-4):197\u2013387. https:\/\/doi.org\/10.1561\/2000000039.","journal-title":"Found Trends Sig Process"},{"key":"127_CR96","doi-asserted-by":"crossref","unstructured":"Kwon D, Kim H, Kim J, Suh S, Kim I, Kim K. A survey of deep learning-based network anomaly detection. Clust Comput. 2017;:161\u2013167.","DOI":"10.1007\/s10586-017-1117-8"},{"key":"127_CR97","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1017\/atsip.2013.9","volume":"3","author":"L Deng","year":"2014","unstructured":"Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans Sig Inf Process. 2014; 3:2. https:\/\/doi.org\/10.1017\/atsip.2013.9.","journal-title":"APSIPA Trans Sig Inf Process"},{"key":"127_CR98","doi-asserted-by":"publisher","unstructured":"Kim S, McMahon P, Olukotun K. A large-scale architecture for restricted boltzmann machines. In: 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines: 2010. p. 201\u20138. https:\/\/doi.org\/10.1109\/FCCM.2010.38.","DOI":"10.1109\/FCCM.2010.38"},{"issue":"12","key":"127_CR99","doi-asserted-by":"publisher","first-page":"2295","DOI":"10.1109\/JPROC.2017.2761740","volume":"105","author":"V Sze","year":"2017","unstructured":"Sze V, Chen Y, Yang T, Emer J. Efficient processing of deep neural networks: A tutorial and survey. Proc IEEE. 2017; 105(12):2295\u2013329.","journal-title":"Proc IEEE"},{"key":"127_CR100","doi-asserted-by":"publisher","first-page":"514","DOI":"10.1109\/ACCESS.2014.2325029","volume":"2","author":"X Chen","year":"2014","unstructured":"Chen X, Lin X. Big data deep learning: Challenges and perspectives. IEEE Access. 2014; 2:514\u201325.","journal-title":"IEEE Access"},{"key":"127_CR101","doi-asserted-by":"publisher","first-page":"4209","DOI":"10.1109\/ACCESS.2017.2688362","volume":"5","author":"X Wang","year":"2017","unstructured":"Wang X, Gao L, Mao S. BiLoc: Bi-Modal Deep Learning for Indoor Localization With Commodity 5GHz WiFi. IEEE Access. 2017; 5:4209\u201320. https:\/\/doi.org\/10.1109\/ACCESS.2017.2688362.","journal-title":"IEEE Access"},{"issue":"9","key":"127_CR102","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1109\/MCOM.2018.1701277","volume":"56","author":"X Wang","year":"2018","unstructured":"Wang X, Wang X, Mao S. RF sensing in the internet of things: A general deep learning framework. IEEE Commun Mag. 2018; 56(9):62\u20137. https:\/\/doi.org\/10.1109\/MCOM.2018.1701277.","journal-title":"IEEE Commun Mag"},{"key":"127_CR103","volume-title":"Deep learning in indoor localization using WiFi","year":"2019","unstructured":"Turgut Z, \u00dcstebay S, Zeynep G\u00fcrka\u015f Ayd\u0131n G, Sertba\u015f A. In: Boyaci A, Ekti A, Aydin M, Yarkan S, (eds).Deep learning in indoor localization using WiFi. Singapore: Springer; 2019, pp. 101\u201310."},{"key":"127_CR104","doi-asserted-by":"publisher","unstructured":"Wang F, Gong W, Liu J, Wu K. Channel selective activity recognition with WiFi: A deep learning approach exploring wideband information. IEEE Trans Netw Sci Eng. 2018:1\u20131. https:\/\/doi.org\/10.1109\/TNSE.2018.2825144.","DOI":"10.1109\/TNSE.2018.2825144"},{"key":"127_CR105","volume-title":"Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services","author":"L Huynh","year":"2017","unstructured":"Huynh L, Lee Y, Balan R. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. New York: Association for Computing Machinery: 2017. p. 82\u201395."},{"issue":"3","key":"127_CR106","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1109\/MCSE.2010.69","volume":"12","author":"J Stone","year":"2010","unstructured":"Stone J, Gohara D, Shi G. Opencl: A parallel programming standard for heterogeneous computing systems. Comput Sci Eng. 2010; 12(3):66\u201373.","journal-title":"Comput Sci Eng"},{"key":"127_CR107","unstructured":"NVIDIA Corporation. NVIDIA CUDA C Programming Guide. 2010;:3.1.1."},{"issue":"3","key":"127_CR108","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1016\/j.parco.2011.09.001","volume":"38","author":"A Kl\u00f6ckner","year":"2012","unstructured":"Kl\u00f6ckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. Pycuda and pyopencl: A scripting-based approach to gpu run-time code generation. Parallel Comput. 2012; 38(3):157\u201374.","journal-title":"Parallel Comput"},{"key":"127_CR109","volume-title":"Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC","author":"S Lam","year":"2015","unstructured":"Lam S, Pitrou A, Seibert S. Numba: a LLVM-based Python JIT compiler. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. New York: Association for Computing Machinery: 2015. p. 1\u20136."},{"key":"127_CR110","volume-title":"Proceedings of the 46th International Symposium on Computer Architecture","author":"Y Sun","year":"2019","unstructured":"Sun Y, Baruah T, Mojumder S, Dong S, Gong X, Treadway S, Bao Y, Hance S, McCardwell C, Zhao V, et al. MGPUSim: enabling multi-GPU performance modeling and optimization. In: Proceedings of the 46th International Symposium on Computer Architecture. New York: Association for Computing Machinery: 2019. p. 197\u2013209."},{"key":"127_CR111","unstructured":"Gu J, Chowdhury M, Shin K, Zhu Y, Jeon M, Qian J, Liu H, Guo C. Tiresias: A {GPU} cluster manager for distributed deep learning. In: 16th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 19): 2019. p. 485\u2013500."},{"key":"127_CR112","volume-title":"Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing","author":"M Zaharia","year":"2012","unstructured":"Zaharia M, Das T, Li H, Shenker S, Stoica I. Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters. In: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing. Boston: USENIX Association: 2012. p. 10\u201310."},{"issue":"8","key":"127_CR113","doi-asserted-by":"publisher","first-page":"716","DOI":"10.14778\/2212351.2212354","volume":"5","author":"Y Low","year":"2012","unstructured":"Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein J. Distributed graphlab: a framework for machine learning and data mining in the cloud. Proc VLDB Endowment. 2012; 5(8):716\u201327.","journal-title":"Proc VLDB Endowment"},{"issue":"3","key":"127_CR114","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1145\/1272998.1273005","volume":"41","author":"M Isard","year":"2007","unstructured":"Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad: distributed data-parallel programs from sequential building blocks. ACM SIGOPS Oper Syst Rev. 2007; 41(3):59\u201372. ACM.","journal-title":"ACM SIGOPS Oper Syst Rev"},{"issue":"1","key":"127_CR115","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1145\/1327452.1327492","volume":"51","author":"J Dean","year":"2008","unstructured":"Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008; 51(1):107\u201313.","journal-title":"Commun ACM"},{"issue":"1","key":"127_CR116","doi-asserted-by":"publisher","first-page":"9","DOI":"10.14445\/22312803\/IJCTT-V19P103","volume":"19","author":"M Iqbal","year":"2015","unstructured":"Iqbal M, Soomro T. Big data analysis: Apache storm perspective. Int J Comput Trends Technol. 2015; 19(1):9\u201314.","journal-title":"Int J Comput Trends Technol"},{"key":"127_CR117","unstructured":"Carbone P, F\u00f3ra G, Ewen S, Haridi S, Tzoumas K. Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603. 2015;:1\u20138."},{"key":"127_CR118","volume-title":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","author":"S Kulkarni","year":"2015","unstructured":"Kulkarni S, Bhagat N, Fu M, Kedigehalli V, Kellogg C, Mittal S, Patel J, Ramasamy K, Taneja S. Twitter heron: Stream processing at scale. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. New York: Association for Computing Machinery: 2015. p. 239\u201350."},{"key":"127_CR119","volume-title":"2016 IEEE Global Communications Conference (GLOBECOM)","author":"M Andreoni Lopez","year":"2016","unstructured":"Andreoni Lopez M, Lobato A, Duarte O. A performance comparison of open-source stream processing platforms. In: 2016 IEEE Global Communications Conference (GLOBECOM). Washington: IEEE: 2016. p. 1\u20136."},{"key":"127_CR120","volume-title":"2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","author":"S Chintapalli","year":"2016","unstructured":"Chintapalli S, Dagit D, Evans B, Farivar R, Graves T, Holderbaugh M, Liu Z, Nusbaum K, Patil K, Peng B, et al. Benchmarking streaming computation engines: Storm, flink and spark streaming. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Chicago: IEEE: 2016. p. 1789\u201392."},{"key":"127_CR121","volume-title":"Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data","author":"R Xin","year":"2013","unstructured":"Xin R, Rosen J, Zaharia M, Franklin M, Shenker S, Stoica I. Shark: SQL and rich analytics at scale. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York: Association for Computing Machinery: 2013. p. 13\u201324."},{"key":"127_CR122","volume-title":"Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation","author":"M Zaharia","year":"2012","unstructured":"Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin M, Shenker S, Stoica I. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. San Jose: USENIX Association: 2012. p. 2\u20132."},{"key":"127_CR123","volume-title":"Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data","author":"G Malewicz","year":"2010","unstructured":"Malewicz G, Austern M, Bik A, Dehnert J, Horn I, Leiser N, Czajkowski G. Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. New York: Association for Computing Machinery: 2010. p. 135\u201346."},{"key":"127_CR124","unstructured":"Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein J. Graphlab: A new framework for parallel machine learning. arXiv preprint arXiv:1408.2041. 2014."},{"key":"127_CR125","volume-title":"11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)","author":"J Gonzalez","year":"2014","unstructured":"Gonzalez J, Xin R, Dave A, Crankshaw D, Franklin M, Stoica I. GraphX: Graph processing in a distributed dataflow framework. In: 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14). Broomfield: USENIX Association: 2014. p. 599\u2013613."},{"issue":"1","key":"127_CR126","first-page":"1235","volume":"17","author":"X Meng","year":"2016","unstructured":"Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, Freeman J, Tsai D, Amde M, Owen S, et al. Mllib: Machine learning in apache spark. J Mach Learn Res. 2016; 17(1):1235\u201341.","journal-title":"J Mach Learn Res"},{"key":"127_CR127","unstructured":"Sun Y, Peng M, Zhou Y, Huang Y, Mao S. Application of machine learning in wireless networks: Key techniques and open issues. Technical report. 2018:arXiv preprint arXiv:1809.08707. https:\/\/arxiv.org\/abs\/1809.08707. Acessado em 22 Mar 2019."},{"issue":"5","key":"127_CR128","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1109\/MCOM.2017.1600951","volume":"55","author":"X Foukas","year":"2017","unstructured":"Foukas X, Patounas G, Elmokashfi A, Marina M. Network slicing in 5g: Survey and challenges. IEEE Commun Mag. 2017; 55(5):94\u2013100.","journal-title":"IEEE Commun Mag"},{"key":"127_CR129","volume-title":"NOMS 2018 - 2018 IEEE\/IFIP Network Operations and Management Symposium","author":"I Sanz","year":"2018","unstructured":"Sanz I, Mattos D, Duarte O. SFCPerf: An automatic performance evaluation framework for service function chaining. In: NOMS 2018 - 2018 IEEE\/IFIP Network Operations and Management Symposium. Taipei: IEEE: 2018. p. 1\u20139."}],"container-title":["Journal of Internet Services and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13174-020-00127-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1186\/s13174-020-00127-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1186\/s13174-020-00127-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,2,9]],"date-time":"2022-02-09T22:15:32Z","timestamp":1644444932000},"score":1,"resource":{"primary":{"URL":"https:\/\/jisajournal.springeropen.com\/articles\/10.1186\/s13174-020-00127-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,19]]},"references-count":129,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2020,12]]}},"alternative-id":["127"],"URL":"https:\/\/doi.org\/10.1186\/s13174-020-00127-2","relation":{"has-preprint":[{"id-type":"doi","id":"10.21203\/rs.3.rs-17789\/v2","asserted-by":"object"},{"id-type":"doi","id":"10.21203\/rs.3.rs-17789\/v1","asserted-by":"object"}]},"ISSN":["1867-4828","1869-0238"],"issn-type":[{"value":"1867-4828","type":"print"},{"value":"1869-0238","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,10,19]]},"assertion":[{"value":"16 March 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"22 September 2020","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"19 October 2020","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Not applicable.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval and consent to participate"}},{"value":"Not applicable.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}},{"value":"The authors declare that they have no competing interests.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"6"}}