{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T17:40:03Z","timestamp":1722102003049},"reference-count":29,"publisher":"Springer Science and Business Media LLC","issue":"S18","license":[{"start":{"date-parts":[[2019,11,1]],"date-time":"2019-11-01T00:00:00Z","timestamp":1572566400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2019,11,25]],"date-time":"2019-11-25T00:00:00Z","timestamp":1574640000000},"content-version":"vor","delay-in-days":24,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["BMC Bioinformatics"],"published-print":{"date-parts":[[2019,11]]},"abstract":"Abstract<\/jats:title>Background<\/jats:title>The Gene Ontology (GO) knowledgebase is the world\u2019s largest source of information on the functions of genes. Since the beginning of GO project, various tools have been developed to perform GO enrichment analysis experiments. GO enrichment analysis has become a commonly used method of gene function analysis. Existing GO enrichment analysis tools do not consider tissue-specific information, although this information is very important to current research.<\/jats:p><\/jats:sec>Results<\/jats:title>In this paper, we built an easy-to-use web tool calledT<\/jats:italic>S<\/jats:italic>\u2212G<\/jats:italic>O<\/jats:italic>E<\/jats:italic>A<\/jats:italic>that allows users to easily perform experiments based on tissue-specific GO enrichment analysis.T<\/jats:italic>S<\/jats:italic>\u2212G<\/jats:italic>O<\/jats:italic>E<\/jats:italic>A<\/jats:italic>uses strict threshold statistical method for GO enrichment analysis, and provides statistical tests to improve the reliability of the analysis results. Meanwhile,T<\/jats:italic>S<\/jats:italic>\u2212G<\/jats:italic>O<\/jats:italic>E<\/jats:italic>A<\/jats:italic>provides tools to compare different experimental results, which is convenient for users to compare the experimental results. To evaluate its performance, we tested the genes associated with platelet disease withT<\/jats:italic>S<\/jats:italic>\u2212G<\/jats:italic>O<\/jats:italic>E<\/jats:italic>A<\/jats:italic>.<\/jats:p><\/jats:sec>Conclusions<\/jats:title>T<\/jats:italic>S<\/jats:italic>\u2212G<\/jats:italic>O<\/jats:italic>E<\/jats:italic>A<\/jats:italic>is an effective GO analysis tool with unique features. The experimental results show that our method has better performance and provides a useful supplement for the existing GO enrichment analysis tools.T<\/jats:italic>S<\/jats:italic>\u2212G<\/jats:italic>O<\/jats:italic>E<\/jats:italic>A<\/jats:italic>is available athttp:\/\/120.77.47.2:5678<\/jats:ext-link>.<\/jats:p><\/jats:sec>","DOI":"10.1186\/s12859-019-3125-6","type":"journal-article","created":{"date-parts":[[2019,11,25]],"date-time":"2019-11-25T00:02:47Z","timestamp":1574640167000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["TS-GOEA: a web tool for tissue-specific gene set enrichment analysis based on gene ontology"],"prefix":"10.1186","volume":"20","author":[{"given":"Jiajie","family":"Peng","sequence":"first","affiliation":[]},{"given":"Guilin","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Hansheng","family":"Xue","sequence":"additional","affiliation":[]},{"given":"Tao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xuequn","family":"Shang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,11,25]]},"reference":[{"issue":"1","key":"3125_CR1","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1038\/75556","volume":"25","author":"M Ashburner","year":"2000","unstructured":"Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nature Genet. 2000; 25(1):25.","journal-title":"Nature Genet"},{"issue":"5","key":"3125_CR2","first-page":"553","volume":"17","author":"J Peng","year":"2016","unstructured":"Peng J, Li H, Liu Y, Juan L, Jiang Q, Wang Y, Chen J. Intego2: a web tool for measuring and visualizing gene semantic similarities using gene ontology. BMC Genomics. 2016; 17(5):553.","journal-title":"BMC Genomics"},{"issue":"suppl_1","key":"3125_CR3","doi-asserted-by":"publisher","first-page":"258","DOI":"10.1093\/nar\/gkh036","volume":"32","author":"GO Consortium","year":"2004","unstructured":"Consortium GO. The gene ontology (go) database and informatics resource. Nucleic Acids Res. 2004; 32(suppl_1):258\u201361.","journal-title":"Nucleic Acids Res"},{"issue":"D1","key":"3125_CR4","doi-asserted-by":"publisher","first-page":"1049","DOI":"10.1093\/nar\/gku1179","volume":"43","author":"GO Consortium","year":"2014","unstructured":"Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res. 2014; 43(D1):1049\u201356.","journal-title":"Nucleic Acids Res"},{"key":"3125_CR5","doi-asserted-by":"publisher","first-page":"226","DOI":"10.3389\/fgene.2019.00226","volume":"10","author":"J Peng","year":"2019","unstructured":"Peng J, Guan J, Shang X. Predicting parkinson\u2019s disease genes based on node2vec and autoencoder. Front Genet. 2019; 10:226.","journal-title":"Front Genet"},{"issue":"suppl_1","key":"3125_CR6","doi-asserted-by":"publisher","first-page":"322","DOI":"10.1093\/nar\/gkj021","volume":"34","author":"GO Consortium","year":"2006","unstructured":"Consortium GO. The gene ontology (go) project in 2006. Nucleic Acids Res. 2006; 34(suppl_1):322\u20136.","journal-title":"Nucleic Acids Res"},{"issue":"8","key":"3125_CR7","doi-asserted-by":"publisher","first-page":"284","DOI":"10.1186\/s12859-019-2769-6","volume":"20","author":"J Peng","year":"2019","unstructured":"Peng J, Wang X, Shang X. Combining gene ontology with deep neural networks to enhance the clustering of single cell rna-seq data. BMC bioinformatics. 2019; 20(8):284.","journal-title":"BMC bioinformatics"},{"issue":"2","key":"3125_CR8","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1186\/s12918-018-0539-0","volume":"12","author":"J Peng","year":"2018","unstructured":"Peng J, Zhang X, Hui W, Lu J, Li Q, Liu S, Shang X. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach. BMC Syst Biol. 2018; 12(2):18.","journal-title":"BMC Syst Biol"},{"issue":"21","key":"3125_CR9","doi-asserted-by":"publisher","first-page":"4364","DOI":"10.1093\/bioinformatics\/btz254","volume":"35","author":"J Peng","year":"2019","unstructured":"Peng J, Hui W, Li Q, Chen B, Hao J, Jiang Q, Shang X, Wei Z. A learning-based framework for miRNA-disease association identification using neural networks. Bioinformatics. 2019; 35(21):4364\u201371.","journal-title":"Bioinformatics"},{"issue":"D1","key":"3125_CR10","doi-asserted-by":"publisher","first-page":"140","DOI":"10.1093\/nar\/gky1051","volume":"47","author":"L Cheng","year":"2018","unstructured":"Cheng L, Wang P, Tian R, Wang S, Guo Q, Luo M, Zhou W, Liu G, Jiang H, Jiang Q. Lncrna2target v2. 0: a comprehensive database for target genes of lncrnas in human and mouse. Nucleic Acids Res. 2018; 47(D1):140\u20134.","journal-title":"Nucleic Acids Res"},{"key":"3125_CR11","doi-asserted-by":"crossref","unstructured":"Peng J, Zhu L, Wang Y, Chen J. Mining relationships among multiple entities in biological networks. IEEE\/ACM Trans Comput Biol Bioinforma. 2019. https:\/\/doi.org\/10.1109\/TCBB.2019.2904965.","DOI":"10.1109\/TCBB.2019.2904965"},{"issue":"11","key":"3125_CR12","doi-asserted-by":"publisher","first-page":"1953","DOI":"10.1093\/bioinformatics\/bty002","volume":"34","author":"L Cheng","year":"2018","unstructured":"Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. Dincrna: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncrna function. Bioinformatics. 2018; 34(11):1953\u20136.","journal-title":"Bioinformatics"},{"issue":"1","key":"3125_CR13","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1186\/1471-2105-7-191","volume":"7","author":"J Ernst","year":"2006","unstructured":"Ernst J, Bar-Joseph Z. Stem: a tool for the analysis of short time series gene expression data. BMC bioinformatics. 2006; 7(1):191.","journal-title":"BMC bioinformatics"},{"issue":"1","key":"3125_CR14","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1186\/s12920-017-0293-y","volume":"10","author":"R Rodriguez-Esteban","year":"2017","unstructured":"Rodriguez-Esteban R, Jiang X. Differential gene expression in disease: a comparison between high-throughput studies and the literature. BMC Med Genomics. 2017; 10(1):59.","journal-title":"BMC Med Genomics"},{"issue":"suppl_2","key":"3125_CR15","doi-asserted-by":"publisher","first-page":"358","DOI":"10.1093\/nar\/gkn276","volume":"36","author":"Q Zheng","year":"2008","unstructured":"Zheng Q, Wang X-J. Goeast: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res. 2008; 36(suppl_2):358\u201363.","journal-title":"Nucleic Acids Res"},{"issue":"16","key":"3125_CR16","doi-asserted-by":"publisher","first-page":"3448","DOI":"10.1093\/bioinformatics\/bti551","volume":"21","author":"S Maere","year":"2005","unstructured":"Maere S, Heymans K, Kuiper M. Bingo: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005; 21(16):3448\u20139.","journal-title":"Bioinformatics"},{"issue":"9","key":"3125_CR17","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1186\/gb-2003-4-9-r60","volume":"4","author":"G Dennis","year":"2003","unstructured":"Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. David: database for annotation, visualization, and integrated discovery. Genome Biol. 2003; 4(9):60.","journal-title":"Genome Biol"},{"issue":"suppl_2","key":"3125_CR18","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1093\/nar\/gkr378","volume":"39","author":"J Reimand","year":"2011","unstructured":"Reimand J, Arak T, Vilo J. g: Profiler\u2013a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 2011; 39(suppl_2):307\u201315.","journal-title":"Nucleic Acids Res"},{"issue":"1","key":"3125_CR19","doi-asserted-by":"publisher","first-page":"48","DOI":"10.1186\/1471-2105-10-48","volume":"10","author":"E Eden","year":"2009","unstructured":"Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. Gorilla: a tool for discovery and visualization of enriched go terms in ranked gene lists. BMC bioinformatics. 2009; 10(1):48.","journal-title":"BMC bioinformatics"},{"issue":"1","key":"3125_CR20","doi-asserted-by":"publisher","first-page":"271","DOI":"10.1186\/1471-2105-9-271","volume":"9","author":"X Liu","year":"2008","unstructured":"Liu X, Yu X, Zack DJ, Zhu H, Qian J. Tiger: a database for tissue-specific gene expression and regulation. BMC bioinformatics. 2008; 9(1):271.","journal-title":"BMC bioinformatics"},{"issue":"4","key":"3125_CR21","doi-asserted-by":"publisher","first-page":"1077","DOI":"10.1016\/j.celrep.2017.10.001","volume":"21","author":"AR Sonawane","year":"2017","unstructured":"Sonawane AR, Platig J, Fagny M, Chen C-Y, Paulson JN, Lopes-Ramos CM, DeMeo DL, Quackenbush J, Glass K, Kuijjer ML. Understanding tissue-specific gene regulation. Cell Rep. 2017; 21(4):1077\u201388.","journal-title":"Cell Rep"},{"issue":"9","key":"3125_CR22","doi-asserted-by":"publisher","first-page":"1273","DOI":"10.1093\/bioinformatics\/btq109","volume":"26","author":"S-J Xiao","year":"2010","unstructured":"Xiao S-J, Zhang C, Zou Q, Ji Z-L. Tisged: a database for tissue-specific genes. Bioinformatics. 2010; 26(9):1273\u20135.","journal-title":"Bioinformatics"},{"issue":"6","key":"3125_CR23","doi-asserted-by":"publisher","first-page":"580","DOI":"10.1038\/ng.2653","volume":"45","author":"J Lonsdale","year":"2013","unstructured":"Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, et al. The genotype-tissue expression (gtex) project. Nature Genet. 2013; 45(6):580.","journal-title":"Nature Genet"},{"issue":"6235","key":"3125_CR24","doi-asserted-by":"publisher","first-page":"648","DOI":"10.1126\/science.1262110","volume":"348","author":"G Consortium","year":"2015","unstructured":"Consortium G, et al. The genotype-tissue expression (gtex) pilot analysis: multitissue gene regulation in humans. Science. 2015; 348(6235):648\u201360.","journal-title":"Science"},{"issue":"7675","key":"3125_CR25","doi-asserted-by":"publisher","first-page":"204","DOI":"10.1038\/nature24277","volume":"550","author":"G Consortium","year":"2017","unstructured":"Consortium G, et al. Genetic effects on gene expression across human tissues. Nature. 2017; 550(7675):204.","journal-title":"Nature"},{"issue":"1","key":"3125_CR26","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1111\/j.2517-6161.1995.tb02031.x","volume":"57","author":"Y Benjamini","year":"1995","unstructured":"Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc: Ser B (Methodol). 1995; 57(1):289\u2013300.","journal-title":"J Royal Stat Soc: Ser B (Methodol)"},{"issue":"5","key":"3125_CR27","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1186\/s12859-018-2102-9","volume":"19","author":"J Peng","year":"2018","unstructured":"Peng J, Hui W, Shang X. Measuring phenotype-phenotype similarity through the interactome. BMC bioinformatics. 2018; 19(5):114.","journal-title":"BMC bioinformatics"},{"issue":"2","key":"3125_CR28","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1504\/IJDMB.2017.084268","volume":"17","author":"J Peng","year":"2017","unstructured":"Peng J, Xue H, Shao Y, Shang X, Wang Y, Chen J. A novel method to measure the semantic similarity of hpo terms. IJDMB. 2017; 17(2):173\u201388.","journal-title":"IJDMB"},{"issue":"5","key":"3125_CR29","doi-asserted-by":"publisher","first-page":"554","DOI":"10.1186\/s12864-017-3911-3","volume":"18","author":"G Babbi","year":"2017","unstructured":"Babbi G, Martelli PL, Profiti G, Bovo S, Savojardo C, Casadio R. edgar: a database of disease-gene associations with annotated relationships among genes. BMC Genomics. 2017; 18(5):554.","journal-title":"BMC Genomics"}],"container-title":["BMC Bioinformatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1186\/s12859-019-3125-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1186\/s12859-019-3125-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1186\/s12859-019-3125-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T17:09:45Z","timestamp":1722100185000},"score":1,"resource":{"primary":{"URL":"https:\/\/bmcbioinformatics.biomedcentral.com\/articles\/10.1186\/s12859-019-3125-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,11]]},"references-count":29,"journal-issue":{"issue":"S18","published-print":{"date-parts":[[2019,11]]}},"alternative-id":["3125"],"URL":"https:\/\/doi.org\/10.1186\/s12859-019-3125-6","relation":{},"ISSN":["1471-2105"],"issn-type":[{"value":"1471-2105","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,11]]},"assertion":[{"value":"25 November 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"572"}}