{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T04:20:25Z","timestamp":1728102025431},"reference-count":30,"publisher":"SAGE Publications","issue":"4","license":[{"start":{"date-parts":[[2020,4,22]],"date-time":"2020-04-22T00:00:00Z","timestamp":1587513600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/journals.sagepub.com\/page\/policies\/text-and-data-mining-license"}],"funder":[{"name":"Exascale Computing Project","award":["17-SC-20-SC"]}],"content-domain":{"domain":["journals.sagepub.com"],"crossmark-restriction":true},"short-container-title":["The International Journal of High Performance Computing Applications"],"published-print":{"date-parts":[[2020,7]]},"abstract":" This article presents a low-rank decomposition algorithm based on subsampling of matrix entries. The proposed algorithm first computes rank-revealing decompositions of submatrices with a blocked adaptive cross approximation (BACA) algorithm, and then applies a hierarchical merge operation via truncated singular value decompositions (H-BACA). The proposed algorithm significantly improves the convergence of the baseline ACA algorithm and achieves reduced computational complexity compared to the traditional decompositions such as rank-revealing QR. Numerical results demonstrate the efficiency, accuracy, and parallel scalability of the proposed algorithm. <\/jats:p>","DOI":"10.1177\/1094342020918305","type":"journal-article","created":{"date-parts":[[2020,4,22]],"date-time":"2020-04-22T11:50:31Z","timestamp":1587556231000},"page":"394-408","update-policy":"http:\/\/dx.doi.org\/10.1177\/sage-journals-update-policy","source":"Crossref","is-referenced-by-count":15,"title":["A parallel hierarchical blocked adaptive cross approximation algorithm"],"prefix":"10.1177","volume":"34","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3750-1178","authenticated-orcid":false,"given":"Yang","family":"Liu","sequence":"first","affiliation":[{"name":"Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"}]},{"given":"Wissam","family":"Sid-Lakhdar","sequence":"additional","affiliation":[{"name":"Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"}]},{"given":"Elizaveta","family":"Rebrova","sequence":"additional","affiliation":[{"name":"Department of Mathematics, University of California, Los Angeles, CA, USA"}]},{"given":"Pieter","family":"Ghysels","sequence":"additional","affiliation":[{"name":"Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"}]},{"given":"Xiaoye Sherry","family":"Li","sequence":"additional","affiliation":[{"name":"Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA"}]}],"member":"179","published-online":{"date-parts":[[2020,4,22]]},"reference":[{"key":"bibr1-1094342020918305","first-page":"185","volume-title":"Proceedings of the 26th annual conference on learning theory, Proceedings of machine learning research","volume":"30","author":"Bach F","year":"2013"},{"key":"bibr2-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1109\/ALLERTON.2010.5706976"},{"key":"bibr3-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1007\/PL00005410"},{"key":"bibr4-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1002\/mma.759"},{"key":"bibr5-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1137\/1.9780898719642"},{"key":"bibr6-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611973068.105"},{"key":"bibr7-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1007\/s10208-009-9045-5"},{"key":"bibr8-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1137\/030602678"},{"key":"bibr9-1094342020918305","unstructured":"Dheeru D, Karra Taniskidou E (2017) UCI machine learning repository. Available at: http:\/\/archive.ics.uci.edu\/ml (accessed 2 December 2014)."},{"key":"bibr10-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1553\/etna_vol51s469"},{"key":"bibr11-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1016\/S0377-0427(97)00154-4"},{"key":"bibr12-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1007\/s00607-003-0019-1"},{"key":"bibr13-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1007\/s00211-005-0618-1"},{"key":"bibr14-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1137\/0917055"},{"issue":"2","key":"bibr15-1094342020918305","doi-asserted-by":"crossref","first-page":"229","DOI":"10.21136\/MB.2002.134156","volume":"127","author":"Hackbusch W","year":"2002","journal-title":"Mathematica Bohemica"},{"key":"bibr16-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1109\/TAP.2014.2316293"},{"key":"bibr17-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1109\/TAP.2014.2386306"},{"key":"bibr18-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.0709640104"},{"key":"bibr19-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.0803205106"},{"key":"bibr20-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1145\/3242670"},{"key":"bibr21-1094342020918305","first-page":"3833","volume-title":"Advances in Neural Information Processing Systems","volume":"30","author":"Musco C","year":"2017"},{"key":"bibr22-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1016\/0024-3795(92)90432-A"},{"key":"bibr23-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1016\/0024-3795(91)90337-V"},{"key":"bibr24-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1016\/0024-3795(92)90382-K"},{"key":"bibr25-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPSW.2018.00140"},{"key":"bibr26-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1007\/s10444-016-9494-8"},{"key":"bibr27-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1137\/17M1135803"},{"key":"bibr28-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1109\/HiPC.2017.00035"},{"key":"bibr29-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1109\/TEMC.2005.857898"},{"key":"bibr30-1094342020918305","doi-asserted-by":"publisher","DOI":"10.1109\/TAP.2017.2670607"}],"container-title":["The International Journal of High Performance Computing Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/journals.sagepub.com\/doi\/pdf\/10.1177\/1094342020918305","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/journals.sagepub.com\/doi\/full-xml\/10.1177\/1094342020918305","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/journals.sagepub.com\/doi\/pdf\/10.1177\/1094342020918305","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,4]],"date-time":"2024-10-04T17:31:24Z","timestamp":1728063084000},"score":1,"resource":{"primary":{"URL":"https:\/\/journals.sagepub.com\/doi\/10.1177\/1094342020918305"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,4,22]]},"references-count":30,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2020,7]]}},"alternative-id":["10.1177\/1094342020918305"],"URL":"https:\/\/doi.org\/10.1177\/1094342020918305","relation":{},"ISSN":["1094-3420","1741-2846"],"issn-type":[{"type":"print","value":"1094-3420"},{"type":"electronic","value":"1741-2846"}],"subject":[],"published":{"date-parts":[[2020,4,22]]}}}