{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T08:23:41Z","timestamp":1725351821030},"reference-count":22,"publisher":"MIT Press","issue":"1-2","content-domain":{"domain":["www.mitpressjournals.org"],"crossmark-restriction":true},"short-container-title":["Data Intellegence"],"published-print":{"date-parts":[[2020,1]]},"abstract":"One of the key goals of the FAIR guiding principles is defined by its final principle \u2013 to optimize data sets for reuse by both humans and machines. To do so, data providers need to implement and support consistent machine readable metadata to describe their data sets. This can seem like a daunting task for data providers, whether it is determining what level of detail should be provided in the provenance metadata or figuring out what common shared vocabularies should be used. Additionally, for existing data sets it is often unclear what steps should be taken to enable maximal, appropriate reuse. Data citation already plays an important role in making data findable and accessible, providing persistent and unique identifiers plus metadata on over 16 million data sets. In this paper, we discuss how data citation and its underlying infrastructures, in particular associated metadata, provide an important pathway for enabling FAIR data reuse.<\/jats:p>","DOI":"10.1162\/dint_a_00030","type":"journal-article","created":{"date-parts":[[2019,11,1]],"date-time":"2019-11-01T20:43:34Z","timestamp":1572641014000},"page":"78-86","update-policy":"http:\/\/dx.doi.org\/10.1162\/mitpressjournals.corrections.policy","source":"Crossref","is-referenced-by-count":34,"title":["FAIR Data Reuse \u2013 the Path through Data Citation"],"prefix":"10.1162","volume":"2","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0183-6910","authenticated-orcid":true,"given":"Paul","family":"Groth","sequence":"first","affiliation":[{"name":"Informatics Institute, University of Amsterdam, Amsterdam 1090 GH, The Netherlands"}]},{"given":"Helena","family":"Cousijn","sequence":"additional","affiliation":[{"name":"DataCite, Welfengarten 1B, Hannover 30167, Germany"}]},{"given":"Tim","family":"Clark","sequence":"additional","affiliation":[{"name":"Data Science Institute, University of Virginia, Charlottesville, VA 22903-1738, USA"}]},{"given":"Carole","family":"Goble","sequence":"additional","affiliation":[{"name":"Department of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK"}]}],"member":"281","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1002\/asi.23917"},{"key":"ref3","doi-asserted-by":"crossref","DOI":"10.1038\/sdata.2018.259","volume":"5","author":"Cousijn H.","year":"2018","journal-title":"Scientific Data"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1038\/s41597-019-0031-8"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1177\/0049124107306660"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0175418"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1002\/asi.23529"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.5334\/dsj-2019-009"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.29173\/iq504"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1056\/NEJMsb1616595"},{"key":"ref11","volume-title":"For Attribution \u2014 Developing Data Attribution and Citation Practices and Standards: Summary of an International Workshop","year":"2012"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.7717\/peerj-cs.1"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1038\/sdata.2018.29"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1038\/sdata.2016.18"},{"key":"ref16","doi-asserted-by":"crossref","unstructured":"M. Fenner. 2017. Using Schema.org for DOI Registration. 10.5438\/0000-00cc.","DOI":"10.53731\/r79zrr1-97aq74v-ag5k1"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/s00778-017-0486-1"},{"key":"ref18","doi-asserted-by":"crossref","volume-title":"Provenance: An introduction to PROV","author":"Moreau L.","year":"2013","DOI":"10.1007\/978-3-031-79450-6"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/2629489"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-70407-4_36"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2011.08.004"},{"key":"ref27","doi-asserted-by":"crossref","volume-title":"Big data, little data, no data: Scholarship in the networked world","author":"Borgman C.L.","year":"2015","DOI":"10.7551\/mitpress\/9963.001.0001"},{"issue":"2017","key":"ref28","doi-asserted-by":"crossref","first-page":"8","DOI":"10.5334\/dsj-2017-008","volume":"16","author":"Pasquetto I.","year":"2017","journal-title":"Data Science Journal"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1002\/asi.22634"}],"container-title":["Data Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mitpressjournals.org\/doi\/pdf\/10.1162\/dint_a_00030","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,3]],"date-time":"2022-10-03T08:21:22Z","timestamp":1664785282000},"score":1,"resource":{"primary":{"URL":"https:\/\/direct.mit.edu\/dint\/article\/2\/1-2\/78-86\/9999"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":22,"journal-issue":{"issue":"1-2","published-print":{"date-parts":[[2020,1]]}},"alternative-id":["10.1162\/dint_a_00030"],"URL":"https:\/\/doi.org\/10.1162\/dint_a_00030","relation":{},"ISSN":["2641-435X"],"issn-type":[{"value":"2641-435X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"2020-01-31","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}