{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,16]],"date-time":"2025-04-16T05:39:41Z","timestamp":1744781981132},"reference-count":42,"publisher":"Wiley","issue":"1","license":[{"start":{"date-parts":[[2022,9,19]],"date-time":"2022-09-19T00:00:00Z","timestamp":1663545600000},"content-version":"vor","delay-in-days":261,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002383","name":"King Saud University","doi-asserted-by":"publisher","award":["RSP-2022\/18"],"id":[{"id":"10.13039\/501100002383","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Complexity"],"published-print":{"date-parts":[[2022,1]]},"abstract":"The food security of more than half of the world\u2019s population depends on rice production which is one of the key objectives of precision agriculture. The traditional rice almanac used astronomical and climate factors to estimate yield response. However, this research integrated meteorological, agro\u2010chemical, and soil physiographic factors for yield response prediction. Besides, the impact of those factors on the production of three major rice ecotypes has also been studied in this research. Moreover, this study found a different set of those factors with respect to the yield response of different rice ecotypes. Machine learning algorithms named Extreme Gradient Boosting (XGBoost) and Support Vector Regression (SVR) have been used for predicting the yield response. The SVR shows better results than XGBoost for predicting the yield of the Aus rice ecotype, whereas XGBoost performs better for forecasting the yield of the Aman and Boro rice ecotypes. The result shows that the root mean squared error (RMSE) of three different ecotypes are in between 9.38% and 24.37% and that of R\u2010squared values are between 89.74% and 99.13% on two different machine learning algorithms. Moreover, the explainability of the models is also shown in this study with the help of the explainable artificial intelligence (XAI) model called Local Interpretable Model\u2010Agnostic Explanations (LIME).<\/jats:p>","DOI":"10.1155\/2022\/5305353","type":"journal-article","created":{"date-parts":[[2022,9,19]],"date-time":"2022-09-19T21:50:08Z","timestamp":1663624208000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Yield Response of Different Rice Ecotypes to Meteorological, Agro\u2010Chemical, and Soil Physiographic Factors for Interpretable Precision Agriculture Using Extreme Gradient Boosting and Support Vector Regression"],"prefix":"10.1155","volume":"2022","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4405-3986","authenticated-orcid":false,"given":"Md. Sabbir","family":"Ahmed","sequence":"first","affiliation":[]},{"given":"Md. Tasin","family":"Tazwar","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2867-5750","authenticated-orcid":false,"given":"Haseen","family":"Khan","sequence":"additional","affiliation":[]},{"given":"Swadhin","family":"Roy","sequence":"additional","affiliation":[]},{"given":"Junaed","family":"Iqbal","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9054-7557","authenticated-orcid":false,"given":"Md. Golam","family":"Rabiul Alam","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6381-3816","authenticated-orcid":false,"given":"Md. Rafiul","family":"Hassan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3479-3606","authenticated-orcid":false,"given":"Mohammad Mehedi","family":"Hassan","sequence":"additional","affiliation":[]}],"member":"311","published-online":{"date-parts":[[2022,9,19]]},"reference":[{"key":"e_1_2_10_1_2","unstructured":"Ricepedia\u201d. International Rice Research Institute AfricaRice and the International Center for Tropical Agriculture https:\/\/ricepedia.org\/rice-as-food\/the-global-staple-rice-consumers."},{"key":"e_1_2_10_2_2","doi-asserted-by":"publisher","DOI":"10.1109\/jas.2020.1003536"},{"key":"e_1_2_10_3_2","doi-asserted-by":"crossref","unstructured":"SobayoR. WuH. H. RayR. andQianL. Integration of convolutional neural network and thermal images into soil moisture estimation Proceedings of the 2018 1st International Conference on Data Intelligence and Security (ICDIS) May2018 South Padre Island TX USA IEEE 207\u2013210.","DOI":"10.1109\/ICDIS.2018.00041"},{"key":"e_1_2_10_4_2","doi-asserted-by":"crossref","unstructured":"RahmanS. k A. l. Z. MitraK. C. andIslamS. M. M. Soil classification using machine learning methods and crop suggestion based on soil series Proceedings of the 2018 21st International Conference of Computer and Information Technology (ICCIT) December2018 Dhaka Bangladesh IEEE 1\u20134.","DOI":"10.1109\/ICCITECHN.2018.8631943"},{"key":"e_1_2_10_5_2","doi-asserted-by":"crossref","unstructured":"KaurK.andSingh AttwalK. Effect of temperature and rainfall on paddy yield using data mining Proceedings of the 2017 7th International Conference on Cloud Computing Data Science & Engineering-Confluence January2017 Noida India IEEE 506\u2013511.","DOI":"10.1109\/CONFLUENCE.2017.7943204"},{"key":"e_1_2_10_6_2","doi-asserted-by":"crossref","unstructured":"HossainM. B. RoyD. ManiruzzamanM. d. BiswasJ. C. NaherU. A. HaqueM. M. andKalraN. Response of crop water requirement and yield of irrigated rice to elevated temperature in Bangladesh International Journal of Agronomy 2021 2021\u201311 https:\/\/doi.org\/10.1155\/2021\/9963201.","DOI":"10.1155\/2021\/9963201"},{"key":"e_1_2_10_7_2","doi-asserted-by":"crossref","unstructured":"WickramasingheL. WeliwattaR. EkanayakeP. andJayasingheJ. Modeling the relationship between rice yield and climate variables using statistical and machine learning techniques Journal of Mathematics 2021 2021\u20139 https:\/\/doi.org\/10.1155\/2021\/6646126.","DOI":"10.1155\/2021\/6646126"},{"key":"e_1_2_10_8_2","doi-asserted-by":"crossref","unstructured":"AmaratungaV. WickramasingheL. PereraA. JayasingheJ. andRathnayakeU. Artificial neural network to estimate the paddy yield prediction using climatic data Mathematical Problems in Engineering 2020 1\u201311 https:\/\/doi.org\/10.1155\/2020\/8627824.","DOI":"10.1155\/2020\/8627824"},{"key":"e_1_2_10_9_2","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0252402"},{"key":"e_1_2_10_10_2","doi-asserted-by":"crossref","unstructured":"GuruprasadR. B. KumarS. andRandhawaS. Machine learning methodologies for paddy yield estimation in India: a case study Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium Augest2019 Yokohama Japan IEEE 7254\u20137257.","DOI":"10.1109\/IGARSS.2019.8900339"},{"key":"e_1_2_10_11_2","doi-asserted-by":"crossref","unstructured":"TakayamaT. UchidaA. SekineH. FukuharaK. YoshidaK. KashimuO. MuljonoS. AriefD. EvriM. andSadlyM. Validation of bipls for improving yield estimation of rice paddy from hyperspectral data in west java Indonesia Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium July2012 Munich Germany IEEE 6581\u20136584.","DOI":"10.1109\/IGARSS.2012.6352091"},{"key":"e_1_2_10_12_2","doi-asserted-by":"crossref","unstructured":"MuthusingheM. R. S. PalliyaguruS. T. WandW. SarangaA. M. H. andRankothgeW. H. Towards smart farming: accurate prediction of paddy harvest and rice demand In Proceedings of the 2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) December2018 Malambe Sri Lanka IEEE 1\u20136.","DOI":"10.1109\/R10-HTC.2018.8629843"},{"key":"e_1_2_10_13_2","doi-asserted-by":"crossref","unstructured":"LiundiN. DarmaA. W. GunarsoR. andWarnarsH. L. H. S. Improving rice productivity in Indonesia with artificial intelligence In Proceedings of the 2019 7th International Conference on Cyber and IT Service Management (CITSM) November2019 Jakarta Indonesia IEEE 1\u20135.","DOI":"10.1109\/CITSM47753.2019.8965385"},{"key":"e_1_2_10_14_2","doi-asserted-by":"crossref","unstructured":"HanX. LiuF. HeX. andLingF. Research on rice yield prediction model based on deep learning Computational Intelligence and Neuroscience 2022 1\u20139 https:\/\/doi.org\/10.1155\/2022\/1922561.","DOI":"10.1155\/2022\/1922561"},{"key":"e_1_2_10_15_2","unstructured":"KohP. W.andLiangP. Understanding black-box predictions via influence functions Proceedings of the International Conference on Machine Learning 2017 PMLR 1885\u20131894."},{"key":"e_1_2_10_16_2","unstructured":"BojarskiM. YeresP. ChoromanskaA. ChoromanskiK. FirnerB. JackelL. andMullerU. Explaining how a deep neural network trained with end-to-end learning steers a car 2017 http:\/\/arxiv.org\/abs\/1704.07911."},{"key":"e_1_2_10_17_2","unstructured":"RibeiroM. T. SinghS. andGuestrinC. \u201cModel-agnostic interpretability of machine learning 2016 http:\/\/arxiv.org\/abs\/1606.05386?context=cs.LG."},{"key":"e_1_2_10_18_2","unstructured":"DoranD. SchulzS. andBesoldT. R. What does explainable ai really mean? a new conceptualization of perspectives 2017 http:\/\/arxiv.org\/abs\/1710.00794."},{"key":"e_1_2_10_19_2","doi-asserted-by":"publisher","DOI":"10.1109\/access.2018.2870052"},{"key":"e_1_2_10_20_2","doi-asserted-by":"crossref","unstructured":"WanninayakaW. m. r. K. RathnayakaR. M. K. T. andUdayakumaraE. P. N. Artificial neural network to estimate the paddy yield prediction using remote sensing weather and non weather variable in ampara district Sri Lanka Proceedings of the 2020 5th International Conference on Information Technology Research (ICITR) December2020 Moratuwa Sri Lanka IEEE 1\u20136.","DOI":"10.1109\/ICITR51448.2020.9310894"},{"key":"e_1_2_10_21_2","doi-asserted-by":"crossref","unstructured":"AlamMd S. KalpomaK. KarimMd S. Al SefatA. andKudohJ.-ichi Boro rice yield estimation model using modis ndvi data for Bangladesh Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium Augest2019 Yokohama Japan IEEE 7330\u20137333.","DOI":"10.1109\/IGARSS.2019.8899084"},{"key":"e_1_2_10_22_2","doi-asserted-by":"publisher","DOI":"10.1109\/jstars.2021.3118707"},{"key":"e_1_2_10_23_2","doi-asserted-by":"crossref","unstructured":"HossainMd A. UddinM. N. Arif HossainM. andJangY. M. Predicting rice yield for Bangladesh by exploiting weather conditions Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC) October2017 Jeju Island South Korea IEEE 589\u2013594.","DOI":"10.1109\/ICTC.2017.8191047"},{"key":"e_1_2_10_24_2","doi-asserted-by":"publisher","DOI":"10.1109\/jstars.2014.2357584"},{"key":"e_1_2_10_25_2","doi-asserted-by":"crossref","unstructured":"GandhiN. PetkarO. andArmstrongL. J. Rice crop yield prediction using artificial neural networks Proceedings of the 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR) July2016 Chennai Tamil Nadu India IEEE 105\u2013110.","DOI":"10.1109\/TIAR.2016.7801222"},{"key":"e_1_2_10_26_2","doi-asserted-by":"crossref","unstructured":"ChakrabartyA. MansoorN. UddinM. I. Al-adailehM. H. AlsharifN. andAlsaadeF. W. Prediction approaches for smart cultivation: a comparative study Complexity 2021 2021\u201316 https:\/\/doi.org\/10.1155\/2021\/5534379.","DOI":"10.1155\/2021\/5534379"},{"key":"e_1_2_10_27_2","doi-asserted-by":"publisher","DOI":"10.1007\/s11831-021-09569-8"},{"key":"e_1_2_10_28_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-15-8530-2_58"},{"key":"e_1_2_10_29_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.agrformet.2020.108275"},{"key":"e_1_2_10_30_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.rsase.2021.100494"},{"key":"e_1_2_10_31_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.agrformet.2021.108530"},{"key":"e_1_2_10_32_2","unstructured":"Agricultural Dataset Bangladesh(44 Parameters https:\/\/www.kaggle.com\/tanhim\/agricultural-dataset-bangladesh-44-parameters."},{"key":"e_1_2_10_33_2","doi-asserted-by":"crossref","unstructured":"ChenT.andGuestrinC. Xgboost: a scalable tree boosting system Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining November2016 New York NY ACM 785\u2013794.","DOI":"10.1145\/2939672.2939785"},{"key":"e_1_2_10_34_2","doi-asserted-by":"publisher","DOI":"10.1007\/s10462-020-09896-5"},{"key":"e_1_2_10_35_2","doi-asserted-by":"publisher","DOI":"10.3389\/fnbot.2013.00021"},{"key":"e_1_2_10_36_2","doi-asserted-by":"publisher","DOI":"10.1016\/s0167-9473(01)00065-2"},{"key":"e_1_2_10_37_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-41136-6_5"},{"key":"e_1_2_10_38_2","article-title":"Xgboost: extreme gradient boosting","volume":"1","author":"Chen T.","year":"2015","journal-title":"R package version 0"},{"key":"e_1_2_10_39_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4302-5990-9_4"},{"key":"e_1_2_10_40_2","article-title":"Support vector regression\u201d. Department of computer science","author":"Max Welling","year":"2004","journal-title":"University of Toronto, Toronto (Kanada)"},{"key":"e_1_2_10_41_2","doi-asserted-by":"crossref","unstructured":"MessalasA. AridasC. andKanellopoulosY. Evaluating mashap as a faster alternative to lime for model-agnostic machine learning interpretability Proceedings of the 2020 IEEE International Conference on Big Data (Big Data) December2020 Atlanta GA USA IEEE 5777\u20135779.","DOI":"10.1109\/BigData50022.2020.9378034"},{"key":"e_1_2_10_42_2","unstructured":"J\u00fcrgen Dieber and Sabrina Kirrane Why model why? assessing the strengths and limitations of lime\u201d 2020 http:\/\/arxiv.org\/abs\/2012.00093."}],"container-title":["Complexity"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/downloads.hindawi.com\/journals\/complexity\/2022\/5305353.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/downloads.hindawi.com\/journals\/complexity\/2022\/5305353.xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1155\/2022\/5305353","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T05:47:22Z","timestamp":1721800042000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1155\/2022\/5305353"}},"subtitle":[],"editor":[{"given":"Giacomo","family":"Fiumara","sequence":"additional","affiliation":[]}],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":42,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2022,1]]}},"alternative-id":["10.1155\/2022\/5305353"],"URL":"https:\/\/doi.org\/10.1155\/2022\/5305353","archive":["Portico"],"relation":{},"ISSN":["1076-2787","1099-0526"],"issn-type":[{"value":"1076-2787","type":"print"},{"value":"1099-0526","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"2022-06-17","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-07-29","order":2,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-09-19","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}