{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T22:10:06Z","timestamp":1723241406164},"reference-count":43,"publisher":"Wiley","issue":"1","license":[{"start":{"date-parts":[[2021,1,8]],"date-time":"2021-01-08T00:00:00Z","timestamp":1610064000000},"content-version":"vor","delay-in-days":7,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Complexity"],"published-print":{"date-parts":[[2021,1]]},"abstract":"Acid fracturing is the most important stimulation method in the carbonate reservoir. Due to the high cost and high risk of acid fracturing, it is necessary to predict the reservoir productivity before acid fracturing, which can provide support to optimize the parameters of acid fracturing. However, the productivity of a single well is affected by various construction parameters and geological conditions. Overfitting can occur when performing productivity prediction tasks on the high\u2010dimension, small\u2010sized reservoir, and acid fracturing dataset. Therefore, this study developed a stacking heterogeneous ensemble model with a hybrid wrapper\u2010based feature selection strategy to forecast reservoir productivity, resolve the overfitting problem, and improve productivity prediction. Compared to other baseline models, the proposed model was found to have the best predictive performances on the test set and effectively deal with the overfitting. The results proved that the hybrid wrapper\u2010based feature selection strategy introduced in this study reduced data acquisition costs and improved model comprehensibility without reducing model performance.<\/jats:p>","DOI":"10.1155\/2021\/6675638","type":"journal-article","created":{"date-parts":[[2021,1,8]],"date-time":"2021-01-08T21:22:44Z","timestamp":1610140964000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Novel Stacking Heterogeneous Ensemble Model with Hybrid Wrapper\u2010Based Feature Selection for Reservoir Productivity Predictions"],"prefix":"10.1155","volume":"2021","author":[{"given":"Changlin","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Lang","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Weihua","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Qian","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Keliang","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Wenqiu","family":"Guo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1618-3003","authenticated-orcid":false,"given":"Liying","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"311","published-online":{"date-parts":[[2021,1,8]]},"reference":[{"key":"e_1_2_8_1_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.engfailanal.2020.104871"},{"key":"e_1_2_8_2_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.petrol.2019.106471"},{"key":"e_1_2_8_3_2","doi-asserted-by":"publisher","DOI":"10.1080\/15567036.2020.1845253"},{"key":"e_1_2_8_4_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.petrol.2013.04.019"},{"key":"e_1_2_8_5_2","doi-asserted-by":"publisher","DOI":"10.2118\/125530-pa"},{"key":"e_1_2_8_6_2","doi-asserted-by":"publisher","DOI":"10.2118\/137748-PA"},{"key":"e_1_2_8_7_2","doi-asserted-by":"publisher","DOI":"10.1504\/ijogct.2018.093140"},{"key":"e_1_2_8_8_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2018.06.051"},{"key":"e_1_2_8_9_2","doi-asserted-by":"publisher","DOI":"10.2118\/945228-G"},{"key":"e_1_2_8_10_2","doi-asserted-by":"publisher","DOI":"10.2118\/464-G"},{"key":"e_1_2_8_11_2","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"e_1_2_8_12_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.petrol.2019.04.016"},{"key":"e_1_2_8_13_2","doi-asserted-by":"publisher","DOI":"10.1007\/s11053-018-9415-2"},{"key":"e_1_2_8_14_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-35488-8"},{"key":"e_1_2_8_15_2","doi-asserted-by":"publisher","DOI":"10.3390\/app10041267"},{"key":"e_1_2_8_16_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2016.07.017"},{"key":"e_1_2_8_17_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2014.08.072"},{"key":"e_1_2_8_18_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.omega.2020.102296"},{"key":"e_1_2_8_19_2","doi-asserted-by":"publisher","DOI":"10.1162\/153244303322753616"},{"key":"e_1_2_8_20_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.petrol.2020.107291"},{"key":"e_1_2_8_21_2","doi-asserted-by":"publisher","DOI":"10.1109\/tpami.1979.4766926"},{"key":"e_1_2_8_22_2","unstructured":"HallM. A. Correlation-based feature selection for discrete and numeric class machine learning Proceedings of the Seventeenth International Conference on Machine Learning ICML \u201900 2000 San Francisco CA USA Morgan Kaufmann Publishers Inc 359\u2013366."},{"key":"e_1_2_8_23_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.scitotenv.2017.12.152"},{"key":"e_1_2_8_24_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2018.04.008"},{"key":"e_1_2_8_25_2","doi-asserted-by":"publisher","DOI":"10.1007\/bf00994018"},{"key":"e_1_2_8_26_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107649"},{"key":"e_1_2_8_27_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2018.10.043"},{"key":"e_1_2_8_28_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.resourpol.2019.02.014"},{"key":"e_1_2_8_29_2","doi-asserted-by":"publisher","DOI":"10.1023\/a:1010933404324"},{"key":"e_1_2_8_30_2","doi-asserted-by":"publisher","DOI":"10.1214\/aos\/1013203451"},{"key":"e_1_2_8_31_2","doi-asserted-by":"crossref","unstructured":"ChenT.andGuestrinC. Xgboost: a scalable tree boosting system Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD \u201916 August 2016 New York NY USA Association for Computing Machinery 785\u2013794 https:\/\/doi.org\/10.1145\/2939672.2939785 2-s2.0-84984950690.","DOI":"10.1145\/2939672.2939785"},{"key":"e_1_2_8_32_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.02.017"},{"key":"e_1_2_8_33_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2020.106202"},{"key":"e_1_2_8_34_2","doi-asserted-by":"publisher","DOI":"10.1023\/a:1021709817809"},{"key":"e_1_2_8_35_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.ejor.2015.05.030"},{"key":"e_1_2_8_36_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2019.113122"},{"key":"e_1_2_8_37_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2019.105946"},{"key":"e_1_2_8_38_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.dss.2019.03.011"},{"key":"e_1_2_8_39_2","first-page":"91","article-title":"Study on deep shallow negative resistivity difference reservoir in no.9 area of karamay oilfield","volume":"123","author":"Su W.","year":"2006","journal-title":"West-China Exploration Engineering"},{"key":"e_1_2_8_40_2","first-page":"48","article-title":"Effects of shut-in timing on flowback rate and productivity of shale gas wells","volume":"37","author":"Zhang T.","year":"2017","journal-title":"Filtration Industry Analyst"},{"key":"e_1_2_8_41_2","doi-asserted-by":"publisher","DOI":"10.1007\/s11704-019-8374-z"},{"key":"e_1_2_8_42_2","doi-asserted-by":"publisher","DOI":"10.1142\/S1469026820500029"},{"key":"e_1_2_8_43_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2018.01.012"}],"container-title":["Complexity"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/downloads.hindawi.com\/journals\/complexity\/2021\/6675638.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/downloads.hindawi.com\/journals\/complexity\/2021\/6675638.xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1155\/2021\/6675638","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T21:30:23Z","timestamp":1723239023000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1155\/2021\/6675638"}},"subtitle":[],"editor":[{"given":"M. Irfan","family":"Uddin","sequence":"additional","affiliation":[]}],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":43,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2021,1]]}},"alternative-id":["10.1155\/2021\/6675638"],"URL":"https:\/\/doi.org\/10.1155\/2021\/6675638","archive":["Portico"],"relation":{},"ISSN":["1076-2787","1099-0526"],"issn-type":[{"type":"print","value":"1076-2787"},{"type":"electronic","value":"1099-0526"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"2020-11-11","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2020-12-28","order":2,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-01-08","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}