{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:24:17Z","timestamp":1726849457722},"reference-count":56,"publisher":"Wiley","issue":"1","license":[{"start":{"date-parts":[[2018,1,14]],"date-time":"2018-01-14T00:00:00Z","timestamp":1515888000000},"content-version":"vor","delay-in-days":13,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003329","name":"Ministerio de Econom\u00eda y Competitividad","doi-asserted-by":"publisher","award":["TIN2014-57458-R","TIN2017-85221-R"],"id":[{"id":"10.13039\/501100003329","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["Complexity"],"published-print":{"date-parts":[[2018,1]]},"abstract":"Demographic handwriting\u2010based classification problems, such as gender and handedness categorizations, present interesting applications in disciplines like Forensic Biometrics. This work describes an experimental study on the suitability of deep neural networks to three automatic demographic problems: gender, handedness, and combined gender\u2010and\u2010handedness classifications, respectively. Our research was carried out on two public handwriting databases: the IAM dataset containing English texts and the KHATT one with Arabic texts. The considered problems present a high intrinsic difficulty when extracting specific relevant features for discriminating the involved subclasses. Our solution is based on convolutional neural networks since these models had proven better capabilities to extract good features when compared to hand\u2010crafted ones. Our work also describes the first approach to the combined gender\u2010and\u2010handedness prediction, which has not been addressed before by other researchers. Moreover, the proposed solutions have been designed using a unique network configuration for the three considered demographic problems, which has the advantage of simplifying the design complexity and debugging of these deep architectures when handling related handwriting problems. Finally, the comparison of achieved results to those presented in related works revealed the best average accuracy in the gender classification problem for the considered datasets.<\/jats:p>","DOI":"10.1155\/2018\/3891624","type":"journal-article","created":{"date-parts":[[2018,1,14]],"date-time":"2018-01-14T18:30:50Z","timestamp":1515954650000},"update-policy":"http:\/\/dx.doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":32,"title":["Gender and Handedness Prediction from Offline Handwriting Using Convolutional Neural Networks"],"prefix":"10.1155","volume":"2018","author":[{"given":"\u00c1ngel","family":"Morera","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9069-6985","authenticated-orcid":false,"given":"\u00c1ngel","family":"S\u00e1nchez","sequence":"additional","affiliation":[]},{"given":"Jos\u00e9 Francisco","family":"V\u00e9lez","sequence":"additional","affiliation":[]},{"given":"Ana Bel\u00e9n","family":"Moreno","sequence":"additional","affiliation":[]}],"member":"311","published-online":{"date-parts":[[2018,1,14]]},"reference":[{"key":"e_1_2_7_1_2","doi-asserted-by":"publisher","DOI":"10.1109\/34.824821"},{"key":"e_1_2_7_2_2","doi-asserted-by":"publisher","DOI":"10.1520\/JFS15447J"},{"key":"e_1_2_7_3_2","unstructured":"GravesA.andSchmidhuberJ. Offline handwriting recognition with multidimensional recurrent neural networks Proceedings of the 21st Intl. Conf. Neural Information Processing Systems (NIPS\u203208) 2008 545\u2013552."},{"key":"e_1_2_7_4_2","unstructured":"BandiK. R.andSrihariS. N. Writer demographic classification using bagging and boosting Proceedings of the Intl. Graphonomics Society Conference (IGS\u201905) 2005 133\u2013137."},{"key":"e_1_2_7_5_2","doi-asserted-by":"crossref","unstructured":"ChaS.-H.andSrihariS. N. A priori algorithm for sub-category classification analysis of handwriting Proceedings of the 6th International Conference on Document Analysis and Recognition ICDAR 2001 September 2001 Seattle WA USA IEEE 1022\u20131025 https:\/\/doi.org\/10.1109\/ICDAR.2001.953940 2-s2.0-63249111459.","DOI":"10.1109\/ICDAR.2001.953940"},{"key":"e_1_2_7_6_2","doi-asserted-by":"publisher","DOI":"10.1080\/00224545.1996.9712254"},{"key":"e_1_2_7_7_2","doi-asserted-by":"publisher","DOI":"10.1142\/S0218001406004831"},{"key":"e_1_2_7_8_2","unstructured":"BallardL. LoprestiD. andMonroseF. Evaluating the security of handwriting biometrics Proceedings of the Proc 2006 461\u2013466."},{"key":"e_1_2_7_9_2","doi-asserted-by":"publisher","DOI":"10.1186\/1687-5281-2014-10"},{"key":"e_1_2_7_10_2","unstructured":"LiwickiM. SchlapbachA. LoretanP. andBunkeH. Automatic detection of gender and handedness from on-line Handwriting Proceedings of the 13th Conf. Intl Graphonomics Society 2007."},{"key":"e_1_2_7_11_2","doi-asserted-by":"crossref","unstructured":"BouadjenekN. NemmourH. andChibaniY. Histogram of Oriented Gradients for writer\u2032s gender handedness and age prediction Proceedings of the International Symposium on Innovations in Intelligent Systems and Applications INISTA 2015 August 2015 Madrid Spain IEEE https:\/\/doi.org\/10.1109\/INISTA.2015.7276752 2-s2.0-84969165406.","DOI":"10.1109\/INISTA.2015.7276752"},{"key":"e_1_2_7_12_2","doi-asserted-by":"publisher","DOI":"10.1109\/5326.897072"},{"first-page":"396","volume-title":"Advances in neural information processing systems 2","year":"1990","author":"LeCun Y.","key":"e_1_2_7_13_2"},{"key":"e_1_2_7_14_2","doi-asserted-by":"publisher","DOI":"10.1007\/BF00417783"},{"key":"e_1_2_7_15_2","doi-asserted-by":"publisher","DOI":"10.1145\/2431211.2431222"},{"key":"e_1_2_7_16_2","doi-asserted-by":"crossref","unstructured":"MeierU. Cire\u015fanD. C. GambardellaL. M. andSchmidhuberJ. Better digit recognition with a committee of simple neural nets Proceedings of the 11th International Conference on Document Analysis and Recognition ICDAR September 2011 1250\u20131254 https:\/\/doi.org\/10.1109\/ICDAR.2011.252 2-s2.0-82355173010.","DOI":"10.1109\/ICDAR.2011.252"},{"key":"e_1_2_7_17_2","doi-asserted-by":"publisher","DOI":"10.1007\/s10044-002-0169-3"},{"key":"e_1_2_7_18_2","doi-asserted-by":"publisher","DOI":"10.17148\/IJARCCE.2015.4278"},{"key":"e_1_2_7_19_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4471-2188-6"},{"key":"e_1_2_7_20_2","unstructured":"BlucheT. Joint Line Segmentation and Transcription for End-to-End Handwritten Paragraph Recognition Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS\u201916) 2016 Barcelona Spain Allen Institute for Artificial Intelligence."},{"volume-title":"Connectionist Temporal Classification for Offline Handwritten Text Recognition","year":"2016","author":"Nina O.","key":"e_1_2_7_21_2"},{"key":"e_1_2_7_22_2","doi-asserted-by":"publisher","DOI":"10.1111\/j.2044-8325.1983.tb00127.x"},{"key":"e_1_2_7_23_2","first-page":"564","article-title":"Right hand writing vs. Left hand writing of one person. A comparative study","volume":"94","author":"Dziedzic T.","year":"2013","journal-title":"Z Zagadnien Nauk Sadowych"},{"key":"e_1_2_7_24_2","doi-asserted-by":"publisher","DOI":"10.1201\/9781420048773"},{"key":"e_1_2_7_25_2","doi-asserted-by":"publisher","DOI":"10.1007\/s12559-015-9332-1"},{"key":"e_1_2_7_26_2","unstructured":"HeckerR. The scientific examination of sex differences Proc. Fifty-Fourth Annual Meeting of the American Society of Questioned Document Examiners 1996."},{"key":"e_1_2_7_27_2","doi-asserted-by":"publisher","DOI":"10.1093\/llc\/17.4.401"},{"key":"e_1_2_7_28_2","unstructured":"BurnageA. G.andBaguleyG. The British National Corpus Library and Information Briefings 1996 http:\/\/www.natcorp.ox.ac.uk\/archive\/papers\/gblibs.html."},{"key":"e_1_2_7_29_2","doi-asserted-by":"publisher","DOI":"10.1117\/12.527276"},{"key":"e_1_2_7_30_2","doi-asserted-by":"publisher","DOI":"10.1007\/s10044-010-0178-6"},{"key":"e_1_2_7_31_2","doi-asserted-by":"crossref","unstructured":"Al MaadeedS. AyoubyW. Hassa\u00efneA. andAljaamJ. M. QUWI: An Arabic and English handwriting dataset for offline writer identification Proceedings of the 13th International Conference on Frontiers in Handwriting Recognition ICFHR 2012 September 2012 Italy 746\u2013751 https:\/\/doi.org\/10.1109\/ICFHR.2012.256 2-s2.0-84874276599.","DOI":"10.1109\/ICFHR.2012.256"},{"key":"e_1_2_7_32_2","doi-asserted-by":"publisher","DOI":"10.1007\/s10044-014-0371-0"},{"key":"e_1_2_7_33_2","doi-asserted-by":"crossref","unstructured":"MirzaA. MoetesumM. SiddiqiI. andDjeddiC. Gender classification from offline handwriting images using textural features Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition ICFHR 2016 October 2016 Shenzhen China IEEE 395\u2013398 https:\/\/doi.org\/10.1109\/ICFHR.2016.0080 2-s2.0-85012868191.","DOI":"10.1109\/ICFHR.2016.0080"},{"key":"e_1_2_7_34_2","doi-asserted-by":"crossref","unstructured":"TanJ. BiN. SuenC. Y. andNobileN. Multi-feature selection of handwriting for gender identification using mutual information Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition ICFHR 2016 October 2016 Shenzhen China IEEE 578\u2013583 https:\/\/doi.org\/10.1109\/ICFHR.2016.0111 2-s2.0-85012892290.","DOI":"10.1109\/ICFHR.2016.0111"},{"key":"e_1_2_7_35_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2016.11.017"},{"key":"e_1_2_7_36_2","doi-asserted-by":"crossref","unstructured":"DjeddiC. GattalA. Souici-MeslatiL. SiddiqiI. ChibaniY. andEl AbedH. LAMIS-MSHD: a multi-script offline handwriting database Proceedings of the 14th International Conference on Frontiers in Handwriting Recognition ICFHR 2014 September 2014 Heraklion Greece IEEE 93\u201397 https:\/\/doi.org\/10.1109\/ICFHR.2014.23 2-s2.0-84942257316.","DOI":"10.1109\/ICFHR.2014.23"},{"key":"e_1_2_7_37_2","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-48929-2_24"},{"volume-title":"Forensic Handwriting Identification: Fundamental Concepts and Principles","year":"2000","author":"Morris R. N.","key":"e_1_2_7_38_2"},{"key":"e_1_2_7_39_2","first-page":"1","article-title":"Differentiation of handedness of writer based on their strokes and characteristic features","volume":"4","author":"Saran V.","year":"2013","journal-title":"Journal of Forensic Research"},{"key":"e_1_2_7_40_2","doi-asserted-by":"crossref","unstructured":"Al-MaadeedS. FerjaniF. ElloumiS. HassaineA. andJaouaA. Automatic handedness detection from off-line handwriting Proceedings of the 2013 7th IEEE GCC Conference and Exhibition GCC 2013 November 2013 Doha Qatar IEEE 119\u2013124 https:\/\/doi.org\/10.1109\/IEEEGCC.2013.6705761 2-s2.0-84893576740.","DOI":"10.1109\/IEEEGCC.2013.6705761"},{"key":"e_1_2_7_41_2","doi-asserted-by":"publisher","DOI":"10.1186\/s13640-015-0097-y"},{"key":"e_1_2_7_42_2","doi-asserted-by":"crossref","unstructured":"BouadjenekN. NemmourH. andChibaniY. Age gender and handedness prediction from handwriting using gradient features Proceedings of the 13th International Conference on Document Analysis and Recognition ICDAR 2015 August 2015 Tunis Tunisia IEEE 1116\u20131120 https:\/\/doi.org\/10.1109\/ICDAR.2015.7333934 2-s2.0-84962601770.","DOI":"10.1109\/ICDAR.2015.7333934"},{"key":"e_1_2_7_43_2","doi-asserted-by":"crossref","unstructured":"XingL.andQiaoY. DeepWriter: A multi-stream deep CNN for text-independent writer identification Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition ICFHR 2016 October 2016 China 584\u2013589 2-s2.0-85012924274 https:\/\/doi.org\/10.1109\/ICFHR.2016.0112.","DOI":"10.1109\/ICFHR.2016.0112"},{"key":"e_1_2_7_44_2","unstructured":"BartleA.andZhengJ. Gender classification with deep learning Stanford cs224d Course Project Report 2015."},{"key":"e_1_2_7_45_2","doi-asserted-by":"crossref","unstructured":"LeviG.andHassncerT. Age and gender classification using convolutional neural networks Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops CVPRW 2015 June 2015 Boston MA USA IEEE 34\u201342 https:\/\/doi.org\/10.1109\/CVPRW.2015.7301352 2-s2.0-84940671759.","DOI":"10.1109\/CVPRW.2015.7301352"},{"key":"e_1_2_7_46_2","doi-asserted-by":"publisher","DOI":"10.1038\/nature14539"},{"key":"e_1_2_7_47_2","doi-asserted-by":"publisher","DOI":"10.3390\/e19060242"},{"key":"e_1_2_7_48_2","first-page":"1097","article-title":"ImageNet Classification with Deep Convolutional Neural Networks","volume":"25","author":"Krizhevsky A.","year":"2012","journal-title":"Proc. Advances in Neural Information Processing Systems (NIPS\u201912)"},{"key":"e_1_2_7_49_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.autcon.2011.05.004"},{"key":"e_1_2_7_50_2","doi-asserted-by":"publisher","DOI":"10.1080\/713827180"},{"key":"e_1_2_7_51_2","doi-asserted-by":"publisher","DOI":"10.1007\/s100320200071"},{"key":"e_1_2_7_52_2","doi-asserted-by":"crossref","unstructured":"LiwickiM.andBunkeH. IAM-OnDB - An on-line English sentence database acquired from handwritten text on a whiteboard Proceedings of the 8th International Conference on Document Analysis and Recognition September 2005 Seoul South Korea IEEE 956\u2013961 https:\/\/doi.org\/10.1109\/ICDAR.2005.132 2-s2.0-33847392380.","DOI":"10.1109\/ICDAR.2005.132"},{"key":"e_1_2_7_53_2","unstructured":"IAM Homepage http:\/\/www.fki.inf.unibe.ch\/databases\/iam-on-line-handwriting-database."},{"key":"e_1_2_7_54_2","doi-asserted-by":"crossref","unstructured":"MahmoudS. A. AhmadI. AlshayebM. Al-KhatibW. G. ParvezM. T. FinkG. A. M\u00e4rgnerV. andEl AbedH. KHATT: Arabic offline Handwritten Text Database Proceedings of the 13th International Conference on Frontiers in Handwriting Recognition ICFHR 2012 September 2012 Bari Italy IEEE 449\u2013454 https:\/\/doi.org\/10.1109\/ICFHR.2012.224 2-s2.0-84874271064.","DOI":"10.1109\/ICFHR.2012.224"},{"key":"e_1_2_7_55_2","unstructured":"KHATT Homepage http:\/\/khatt.ideas2serve.net."},{"key":"e_1_2_7_56_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.ipm.2009.03.002"}],"container-title":["Complexity"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/downloads.hindawi.com\/journals\/complexity\/2018\/3891624.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/downloads.hindawi.com\/journals\/complexity\/2018\/3891624.xml","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1155\/2018\/3891624","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T19:00:57Z","timestamp":1723143657000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1155\/2018\/3891624"}},"subtitle":[],"editor":[{"given":"Jing","family":"Na","sequence":"additional","affiliation":[]}],"short-title":[],"issued":{"date-parts":[[2018,1]]},"references-count":56,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2018,1]]}},"alternative-id":["10.1155\/2018\/3891624"],"URL":"https:\/\/doi.org\/10.1155\/2018\/3891624","archive":["Portico"],"relation":{},"ISSN":["1076-2787","1099-0526"],"issn-type":[{"type":"print","value":"1076-2787"},{"type":"electronic","value":"1099-0526"}],"subject":[],"published":{"date-parts":[[2018,1]]},"assertion":[{"value":"2017-07-21","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2017-11-12","order":2,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2018-01-14","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}