{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T07:13:00Z","timestamp":1724310780906},"reference-count":31,"publisher":"SAGE Publications","issue":"8","license":[{"start":{"date-parts":[[2015,8,1]],"date-time":"2015-08-01T00:00:00Z","timestamp":1438387200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/journals.sagepub.com\/page\/policies\/text-and-data-mining-license"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Key Basic Research Program of China \u201c973 Project\u201d","doi-asserted-by":"publisher","award":["2011CB707106","41127901-06","61303212","61373169","2014CFB191"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["journals.sagepub.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Distributed Sensor Networks"],"published-print":{"date-parts":[[2015,8,1]]},"abstract":" Finding fastest driving routes is significant for the intelligent transportation system. While predicting the online traffic conditions of road segments entails a variety of challenges, it contributes much to travel time prediction accuracy. In this paper, we propose O-Sense, an innovative online-traffic-prediction based route finding mechanism, which organically utilizes large scale taxi GPS traces and environmental information. O-Sense firstly exploits a deep learning approach to process spatial and temporal taxi GPS traces shown in dynamic patterns. Meanwhile, we model the traffic flow state for a given road segment using a linear-chain conditional random field (CRF), a technique that well forecasts the temporal transformation if provided with further supplementary environmental resources. O-Sense then fuses previously obtained outputs with a dynamic weighted classifier and generates a better traffic condition vector for each road segment at different prediction time. Finally, we perform online route computing to find the fastest path connecting consecutive road segments in the route based on the vectors. Experimental results show that O-Sense can estimate the travel time for driving routes more accurately. <\/jats:p>","DOI":"10.1155\/2015\/970256","type":"journal-article","created":{"date-parts":[[2015,8,13]],"date-time":"2015-08-13T21:04:10Z","timestamp":1439499850000},"page":"970256","update-policy":"http:\/\/dx.doi.org\/10.1177\/sage-journals-update-policy","source":"Crossref","is-referenced-by-count":30,"title":["An Online-Traffic-Prediction Based Route Finding Mechanism for Smart City"],"prefix":"10.1177","volume":"11","author":[{"given":"Xiaoguang","family":"Niu","sequence":"first","affiliation":[{"name":"School of Computer Science, Wuhan University, Wuhan 430000, China"}]},{"given":"Ying","family":"Zhu","sequence":"additional","affiliation":[{"name":"School of Computer Science, Wuhan University, Wuhan 430000, China"}]},{"given":"Qingqing","family":"Cao","sequence":"additional","affiliation":[{"name":"School of Computer Science, Wuhan University, Wuhan 430000, China"}]},{"given":"Xining","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Computer Science, Wuhan University, Wuhan 430000, China"}]},{"given":"Wei","family":"Xie","sequence":"additional","affiliation":[{"name":"Computer School, Central China Normal University, Wuhan 430000, China"}]},{"given":"Kun","family":"Zheng","sequence":"additional","affiliation":[{"name":"Faculty of Information Engineering, China University of Geosciences, Wuhan 430000, China"}]}],"member":"179","published-online":{"date-parts":[[2015,8,13]]},"reference":[{"key":"B1-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/tkde.2012.153"},{"key":"B2-2015-970256","doi-asserted-by":"publisher","DOI":"10.1145\/2030112.2030126"},{"key":"B3-2015-970256","doi-asserted-by":"publisher","DOI":"10.1145\/1835804.1835920"},{"key":"B4-2015-970256","doi-asserted-by":"publisher","DOI":"10.1145\/2020408.2020571"},{"key":"B5-2015-970256","doi-asserted-by":"publisher","DOI":"10.1145\/2493432.2493448"},{"key":"B6-2015-970256","doi-asserted-by":"publisher","DOI":"10.1145\/1644038.1644048"},{"key":"B7-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/glocom.2014.7037223"},{"key":"B8-2015-970256","first-page":"951","volume-title":"Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp \u203214)","author":"Zheng J."},{"key":"B9-2015-970256","first-page":"203","volume-title":"Proceedings of the 25th AAAI Conference on Artificial Intelligence","author":"Tsuyoshi I."},{"key":"B10-2015-970256","first-page":"794","volume-title":"Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB \u203207)","author":"Gonzalez H."},{"key":"B11-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/icde.2006.71"},{"key":"B12-2015-970256","first-page":"1048","volume-title":"Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI \u203213)","author":"Zheng J."},{"key":"B13-2015-970256","doi-asserted-by":"publisher","DOI":"10.1016\/s0968-090x(97)82903-8"},{"key":"B14-2015-970256","doi-asserted-by":"publisher","DOI":"10.1145\/2020408.2020462"},{"key":"B16-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/tkde.2011.200"},{"key":"B18-2015-970256","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-31205-2_4"},{"key":"B17-2015-970256","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-15883-4_17"},{"key":"B19-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2006.869623"},{"key":"B20-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2006.888603"},{"key":"B21-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/mdm.2010.14"},{"key":"B15-2015-970256","doi-asserted-by":"publisher","DOI":"10.1145\/1869790.1869807"},{"key":"B30-2015-970256","unstructured":"Dean B. C.Continuous-time dynamic shortest path algorithms [Master thesis]1999Massachusetts Institute of Technology"},{"key":"B25-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/72.377977"},{"key":"B23-2015-970256","doi-asserted-by":"publisher","DOI":"10.1162\/089976602760128018"},{"key":"B31-2015-970256","first-page":"513","volume-title":"Proceedings of the 28th International Conference on Machine Learning (ICML \u203211)","author":"Glorot X."},{"key":"B26-2015-970256","doi-asserted-by":"publisher","DOI":"10.1016\/0022-460x(68)90273-3"},{"key":"B27-2015-970256","doi-asserted-by":"publisher","DOI":"10.1016\/S0264-2751(02)00093-8"},{"key":"B28-2015-970256","doi-asserted-by":"publisher","DOI":"10.1016\/j.trb.2008.02.004"},{"key":"B29-2015-970256","doi-asserted-by":"publisher","DOI":"10.3141\/1948-19"},{"key":"B22-2015-970256","first-page":"282","volume-title":"Proceedings of the 8th International Conference on Machine Learning (ICML \u203201)","author":"Lafferty J. D."},{"key":"B24-2015-970256","doi-asserted-by":"publisher","DOI":"10.1109\/76.510936"}],"container-title":["International Journal of Distributed Sensor Networks"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/journals.sagepub.com\/doi\/pdf\/10.1155\/2015\/970256","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/journals.sagepub.com\/doi\/full-xml\/10.1155\/2015\/970256","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/journals.sagepub.com\/doi\/pdf\/10.1155\/2015\/970256","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,5]],"date-time":"2021-05-05T12:02:34Z","timestamp":1620216154000},"score":1,"resource":{"primary":{"URL":"http:\/\/journals.sagepub.com\/doi\/10.1155\/2015\/970256"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,8,1]]},"references-count":31,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2015,8,1]]}},"alternative-id":["10.1155\/2015\/970256"],"URL":"https:\/\/doi.org\/10.1155\/2015\/970256","relation":{},"ISSN":["1550-1477","1550-1477"],"issn-type":[{"value":"1550-1477","type":"print"},{"value":"1550-1477","type":"electronic"}],"subject":[],"published":{"date-parts":[[2015,8,1]]}}}