{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,18]],"date-time":"2024-11-18T23:10:03Z","timestamp":1731971403435,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":23,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,11,21]]},"DOI":"10.1145\/3696952.3696973","type":"proceedings-article","created":{"date-parts":[[2024,11,18]],"date-time":"2024-11-18T22:27:26Z","timestamp":1731968846000},"page":"148-153","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Predicting short-term traffic flow using a fractional-order grey model"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0009-0006-8236-6437","authenticated-orcid":false,"given":"Yuxiao","family":"Kang","sequence":"first","affiliation":[{"name":"Wuhan Polytechnic, Wuhan, Hubei, China"}]},{"ORCID":"http:\/\/orcid.org\/0009-0005-8847-6146","authenticated-orcid":false,"given":"Min","family":"Lin","sequence":"additional","affiliation":[{"name":"Wuhan Polytechnic, Wuhan, Hubei, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0446-4796","authenticated-orcid":false,"given":"Shu","family":"Zhang","sequence":"additional","affiliation":[{"name":"Rajamangala University of Technology Tawan-Ok, Bangkok, Bangkok, Thailand"}]}],"member":"320","published-online":{"date-parts":[[2024,11,21]]},"reference":[{"key":"e_1_3_3_1_1_2","doi-asserted-by":"publisher","DOI":"10.1080\/15472450.2021.1977639"},{"key":"e_1_3_3_1_2_2","doi-asserted-by":"publisher","unstructured":"Wang S L Patwary A U Huang W et al. 2022. A general framework for combining traffic flow models and Bayesian network for traffic parameters estimation[J]. TRANSPORT RES C-EMER 139 (April 2022) 103664. 10.1016\/j.trc.2022.103664.","DOI":"10.1016\/j.trc.2022.103664"},{"key":"e_1_3_3_1_3_2","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2016.2515105"},{"key":"e_1_3_3_1_4_2","doi-asserted-by":"publisher","DOI":"10.1177\/0361198120980432"},{"key":"e_1_3_3_1_5_2","doi-asserted-by":"publisher","unstructured":"Osipov V. Nikiforov V. Zhukova N. et al. 2020. Urban traffic flows forecasting by recurrent neural networks with spiral structures of layers. Neural Comput & Applic. 32(March 2020) 14885\u201314897. 10.1007\/s00521-020-04843-5.","DOI":"10.1007\/s00521-020-04843-5"},{"key":"e_1_3_3_1_6_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.physa.2023.129448"},{"key":"e_1_3_3_1_7_2","doi-asserted-by":"publisher","DOI":"10.1109\/MITS.2021.3116156"},{"key":"e_1_3_3_1_8_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.cnsns.2017.06.004"},{"key":"e_1_3_3_1_9_2","doi-asserted-by":"publisher","unstructured":"Vincent B G Peter K K Peterson K H. Data grouping and modified initial condition in grey model improvement for short-term traffic flow forecasting. Automatika. (September 2022) 10.1080\/00051144.2022.2119500.","DOI":"10.1080\/00051144.2022.2119500"},{"key":"e_1_3_3_1_10_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.114972"},{"key":"e_1_3_3_1_11_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2016.06.032"},{"key":"e_1_3_3_1_12_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2020.106538"},{"key":"e_1_3_3_1_13_2","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-019-04364-w"},{"key":"e_1_3_3_1_14_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.isatra.2020.07.023"},{"key":"e_1_3_3_1_15_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2023.119943"},{"key":"e_1_3_3_1_16_2","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-014-1605-1"},{"key":"e_1_3_3_1_17_2","doi-asserted-by":"publisher","unstructured":"Kang Y X Mao S H Zhang Y H. 2022. Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application[J]. TRANSPORT RES B-METH 157 (March 2022): 149-174. 10.1016\/j.trb.2022.01.007.","DOI":"10.1016\/j.trb.2022.01.007"},{"key":"e_1_3_3_1_18_2","volume-title":"Grey prediction and decision methods","author":"Xiao X P","unstructured":"Xiao X P, Mao S H.2013. Grey prediction and decision methods, Science Press."},{"key":"e_1_3_3_1_19_2","doi-asserted-by":"publisher","unstructured":"Wu L F Zhang Z Y. 2018. Grey multivariable convolution model with new information priority accumulation. APPL MATH MODEL. 62(October 2018): 595-604. 10.1016\/j.apm.2018.06.025.","DOI":"10.1016\/j.apm.2018.06.025"},{"key":"e_1_3_3_1_20_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.apm.2015.12.014"},{"key":"e_1_3_3_1_21_2","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2021.107619"},{"key":"e_1_3_3_1_22_2","unstructured":"OpenITS Org. Open data V12.0-large-scale traffic speed data set[EB\/OL]. [2021-06-10]. https:\/\/www.openits.cn\/openData2\/792.jhtml."},{"key":"e_1_3_3_1_23_2","unstructured":"National Traffic Operations Centre. UK highway dataset[EB\/OL]. [2021-6-13]. http:\/\/tris.highwaysengland.co.uk."}],"event":{"name":"ICIIP 2024: 2024 9th International Conference on Intelligent Information Processing","location":"Bucharest Romania","acronym":"ICIIP 2024"},"container-title":["Proceedings of the 2024 9th International Conference on Intelligent Information Processing"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3696952.3696973","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,18]],"date-time":"2024-11-18T22:30:57Z","timestamp":1731969057000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3696952.3696973"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,21]]},"references-count":23,"alternative-id":["10.1145\/3696952.3696973","10.1145\/3696952"],"URL":"https:\/\/doi.org\/10.1145\/3696952.3696973","relation":{},"subject":[],"published":{"date-parts":[[2024,11,21]]},"assertion":[{"value":"2024-11-21","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}