{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,10]],"date-time":"2024-12-10T05:11:57Z","timestamp":1733807517527,"version":"3.30.1"},"publisher-location":"New York, NY, USA","reference-count":29,"publisher":"ACM","funder":[{"name":"European Union - NextGenerationEU - MUR National Recovery and Resilience Plan","award":["SERICS (PE00000014)"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,12,9]]},"DOI":"10.1145\/3694811.3697818","type":"proceedings-article","created":{"date-parts":[[2024,12,2]],"date-time":"2024-12-02T23:21:16Z","timestamp":1733181676000},"page":"7-13","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Detecting Edge and Node Anomalies with Temporal GNNs"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0009-0006-1226-3926","authenticated-orcid":false,"given":"Andrea","family":"Cavallo","sequence":"first","affiliation":[{"name":"Delft University of Technology, Delft, NL"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8258-8626","authenticated-orcid":false,"given":"Luca","family":"Gioacchini","sequence":"additional","affiliation":[{"name":"Politecnico di Torino, Torino, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2920-1856","authenticated-orcid":false,"given":"Luca","family":"Vassio","sequence":"additional","affiliation":[{"name":"DAUIN, Politecnico di Torino, Torino, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1859-6693","authenticated-orcid":false,"given":"Marco","family":"Mellia","sequence":"additional","affiliation":[{"name":"Politecnico di Torino, Torino, Italy"}]}],"member":"320","published-online":{"date-parts":[[2024,12,9]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2015.11.016"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2023.3275789"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/335191.335388"},{"key":"e_1_3_2_1_4_1","volume-title":"2-hop Neighbor Class Similarity (2NCS): A graph structural metric indicative of graph neural network performance. arXiv preprint arXiv:2212.13202","author":"Cavallo Andrea","year":"2022","unstructured":"Andrea Cavallo, Claas Grohnfeldt, Michele Russo, Giulio Lovisotto, and Luca Vassio. 2022. 2-hop Neighbor Class Similarity (2NCS): A graph structural metric indicative of graph neural network performance. arXiv preprint arXiv:2212.13202 (2022)."},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2022.110030"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/D14-1179"},{"key":"e_1_3_2_1_7_1","volume-title":"Deep Anomaly Detection on Attributed Networks. In SIAM International Conference on Data Mining (SDM).","author":"Ding Kaize","year":"2019","unstructured":"Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep Anomaly Detection on Attributed Networks. In SIAM International Conference on Data Mining (SDM)."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.5486\/PMD.1959.6.3-4.12"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3630049.3630175"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"crossref","unstructured":"Luca Gioacchini Luca Vassio Marco Mellia Idilio Drago and Zied Ben Houidi. 2023. i-DarkVec: Incremental Embeddings for Darknet Traffic Analysis. ACM Trans. Internet Technol. (2023).","DOI":"10.1145\/3630049.3630175"},{"key":"e_1_3_2_1_11_1","volume-title":"On the Robustness of Topics API to a Re-Identification Attack. arXiv preprint arXiv:2306.05094","author":"Jha Nikhil","year":"2023","unstructured":"Nikhil Jha, Martino Trevisan, Emilio Leonardi, and Marco Mellia. 2023. On the Robustness of Topics API to a Re-Identification Attack. arXiv preprint arXiv:2306.05094 (2023)."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/MIC.2022.3157356"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.comcom.2021.12.015"},{"key":"e_1_3_2_1_14_1","article-title":"Representation Learning for Dynamic Graphs: A Survey","volume":"21","author":"Kazemi Seyed Mehran","year":"2020","unstructured":"Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic Graphs: A Survey. Journal of Machine Learning Research, Vol. 21, Article 70 (2020), 73 pages.","journal-title":"Journal of Machine Learning Research"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1186\/s42400-019-0038-7"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/3588771"},{"volume-title":"Semi-Supervised Classification with Graph Convolutional Networks. In International Conference on Learning Representations (ICLR).","author":"Thomas","key":"e_1_3_2_1_17_1","unstructured":"Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In International Conference on Learning Representations (ICLR)."},{"key":"e_1_3_2_1_18_1","volume-title":"Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks. In ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.","author":"Kumar Srijan","year":"2019","unstructured":"Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks. In ACM SIGKDD International Conference on Knowledge Discovery & Data Mining."},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1155\/2021\/9961342"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/3319535.3363224"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2021.3068344"},{"key":"e_1_3_2_1_22_1","volume-title":"Fei Xiong, Liang Wang, Qingfeng Chen, and Vincent CS Lee.","author":"Liu Yixin","year":"2021","unstructured":"Yixin Liu, Shirui Pan, Yu Guang Wang, Fei Xiong, Liang Wang, Qingfeng Chen, and Vincent CS Lee. 2021. Anomaly detection in dynamic graphs via transformer. IEEE Transactions on Knowledge and Data Engineering (2021)."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2021.3118815"},{"key":"e_1_3_2_1_24_1","volume-title":"Motifs in Temporal Networks. In ACM International Conference on Web Search and Data Mining","author":"Paranjape Ashwin","year":"2017","unstructured":"Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in Temporal Networks. In ACM International Conference on Web Search and Data Mining (Cambridge, United Kingdom)."},{"key":"e_1_3_2_1_25_1","volume-title":"Zied Ben Houidi, and Idilio Drago","author":"Soro Francesca","year":"2021","unstructured":"Francesca Soro, Thomas Favale, Danilo Giordano, Luca Vassio, Zied Ben Houidi, and Idilio Drago. 2021. The New Abnormal: Network Anomalies in the AI Era. Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning (2021), 261--288."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"crossref","unstructured":"Melissa J. M. Turcotte Alexander D. Kent and Curtis Hash. 2018. Unified Host and Network Data Set. World Scientific 1--22.","DOI":"10.1142\/9781786345646_001"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/2980765.2980767"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2935152"},{"key":"e_1_3_2_1_29_1","volume-title":"Graph Neural Networks with Heterophily. AAAI Conference on Artificial Intelligence","author":"Zhu Jiong","year":"2021","unstructured":"Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai Koutra. 2021. Graph Neural Networks with Heterophily. AAAI Conference on Artificial Intelligence (2021)."}],"event":{"name":"CoNEXT '24: The 20th International Conference on emerging Networking EXperiments and Technologies","sponsor":["SIGCOMM ACM Special Interest Group on Data Communication"],"location":"Los Angeles CA USA","acronym":"CoNEXT '24"},"container-title":["Proceedings of the 3rd GNNet Workshop on Graph Neural Networking Workshop"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3694811.3697818","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,9]],"date-time":"2024-12-09T11:21:12Z","timestamp":1733743272000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3694811.3697818"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12,9]]},"references-count":29,"alternative-id":["10.1145\/3694811.3697818","10.1145\/3694811"],"URL":"https:\/\/doi.org\/10.1145\/3694811.3697818","relation":{},"subject":[],"published":{"date-parts":[[2024,12,9]]},"assertion":[{"value":"2024-12-09","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}