{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,24]],"date-time":"2024-11-24T07:10:01Z","timestamp":1732432201159,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":60,"publisher":"ACM","funder":[{"name":"ANR","award":["ANR-21-CE94-0001"]},{"DOI":"10.13039\/https:\/\/doi.org\/10.13039\/100000001","name":"NSF (National Science Foundation)","doi-asserted-by":"publisher","award":["CNS-2124393"],"id":[{"id":"10.13039\/https:\/\/doi.org\/10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,8,4]]},"DOI":"10.1145\/3672198.3673792","type":"proceedings-article","created":{"date-parts":[[2024,7,16]],"date-time":"2024-07-16T16:24:10Z","timestamp":1721147050000},"page":"9-17","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Feasibility of State Space Models for Network Traffic Generation"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7620-7724","authenticated-orcid":false,"given":"Andrew","family":"Chu","sequence":"first","affiliation":[{"name":"University of Chicago"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1652-8419","authenticated-orcid":false,"given":"Xi","family":"Jiang","sequence":"additional","affiliation":[{"name":"University of Chicago"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6170-2167","authenticated-orcid":false,"given":"Shinan","family":"Liu","sequence":"additional","affiliation":[{"name":"University of Chicago"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2803-5649","authenticated-orcid":false,"given":"Arjun","family":"Bhagoji","sequence":"additional","affiliation":[{"name":"University of Chicago"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4447-960X","authenticated-orcid":false,"given":"Francesco","family":"Bronzino","sequence":"additional","affiliation":[{"name":"\u00c9cole Normale Sup\u00e9rieure de Lyon"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2156-5305","authenticated-orcid":false,"given":"Paul","family":"Schmitt","sequence":"additional","affiliation":[{"name":"University of Hawai'i at M\u0101noa"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9315-5201","authenticated-orcid":false,"given":"Nick","family":"Feamster","sequence":"additional","affiliation":[{"name":"University of Chicago"}]}],"member":"320","published-online":{"date-parts":[[2024,8,4]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"crossref","unstructured":"Sebastian Abt and Harald Baier. 2014. Are we missing labels? A study of the availability of ground-truth in network security research. In 2014 third international workshop on building analysis datasets and gathering experience returns for security (badgers). IEEE 40--55.","DOI":"10.1109\/BADGERS.2014.11"},{"key":"e_1_3_2_1_2_1","volume-title":"3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http:\/\/arxiv.org\/abs\/1409","author":"Bahdanau Dzmitry","year":"2015","unstructured":"Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http:\/\/arxiv.org\/abs\/1409.0473"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2012.02.019"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3366704"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/3563766.3564084"},{"volume-title":"The CISCO TRex Tool. https:\/\/trex-tgn.cisco.com\/. [Online","year":"2024","key":"e_1_3_2_1_7_1","unstructured":"ciscotrex2023 2024. The CISCO TRex Tool. https:\/\/trex-tgn.cisco.com\/. [Online; accessed 31-May-2024]."},{"key":"e_1_3_2_1_8_1","volume-title":"SHAPE: A Simultaneous Header and Payload Encoding Model for Encrypted Traffic Classification","author":"Dai Jianbang","year":"2022","unstructured":"Jianbang Dai, Xiaolong Xu, Honghao Gao, Xinheng Wang, and Fu Xiao. 2022. SHAPE: A Simultaneous Header and Payload Encoding Model for Encrypted Traffic Classification. IEEE Transactions on Network and Service Management (2022)."},{"key":"e_1_3_2_1_9_1","volume-title":"Gorby Kabasele Ndonda, and Ramin Sadre","author":"Keersmaeker Fran\u00e7ois De","year":"2023","unstructured":"Fran\u00e7ois De Keersmaeker, Yinan Cao, Gorby Kabasele Ndonda, and Ramin Sadre. 2023. A Survey of Public IoT Datasets for Network Security Research. IEEE Communications Surveys & Tutorials (2023)."},{"key":"e_1_3_2_1_10_1","volume-title":"Mamba: Linear-time sequence modeling with selective state spaces. ArXiv preprint abs\/2312.00752","author":"Gu Albert","year":"2023","unstructured":"Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with selective state spaces. ArXiv preprint abs\/2312.00752 (2023). https:\/\/arxiv.org\/abs\/2312.00752"},{"key":"e_1_3_2_1_11_1","volume-title":"HiPPO: Recurrent Memory with Optimal Polynomial Projections. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020","author":"Gu Albert","year":"2020","unstructured":"Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher R\u00e9. 2020. HiPPO: Recurrent Memory with Optimal Polynomial Projections. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https:\/\/proceedings.neurips.cc\/paper\/2020\/hash\/102f0bb6efb3a6128a3c750dd16729be-Abstract.html"},{"key":"e_1_3_2_1_12_1","volume-title":"Efficiently Modeling Long Sequences with Structured State Spaces. In The Tenth International Conference on Learning Representations, ICLR 2022","author":"Gu Albert","year":"2022","unstructured":"Albert Gu, Karan Goel, and Christopher R\u00e9. 2022. Efficiently Modeling Long Sequences with Structured State Spaces. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net. https:\/\/openreview.net\/forum?id=uYLFoz1vlAC"},{"key":"e_1_3_2_1_13_1","volume-title":"Zhi Guo Yang, and Xiang Ning Chen","author":"He Hong Ye","year":"2020","unstructured":"Hong Ye He, Zhi Guo Yang, and Xiang Ning Chen. 2020. PERT: Payload encoding representation from transformer for encrypted traffic classification. In 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K). IEEE, 1--8."},{"key":"e_1_3_2_1_14_1","volume-title":"Network simulations with the ns-3 simulator. SIGCOMM demonstration 14, 14","author":"Henderson Thomas R","year":"2008","unstructured":"Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph Kopena. 2008. Network simulations with the ns-3 simulator. SIGCOMM demonstration 14, 14 (2008), 527."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/3460120.3484758"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/3639037"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/3626111.3628196"},{"key":"e_1_3_2_1_18_1","volume-title":"AC-DC: Adaptive Ensemble Classification for Network Traffic Identification. ArXiv preprint abs\/2302.11718","author":"Jiang Xi","year":"2023","unstructured":"Xi Jiang, Shinan Liu, Saloua Naama, Francesco Bronzino, Paul Schmitt, and Nick Feamster. 2023. AC-DC: Adaptive Ensemble Classification for Network Traffic Identification. ArXiv preprint abs\/2302.11718 (2023). https:\/\/arxiv.org\/abs\/2302.11718"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"crossref","unstructured":"Rudolph Emil Kalman. 1960. A new approach to linear filtering and prediction problems. (1960).","DOI":"10.1115\/1.3662552"},{"key":"e_1_3_2_1_20_1","volume-title":"Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13--18","volume":"5165","author":"Katharopoulos Angelos","year":"2020","unstructured":"Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Fran\u00e7ois Fleuret. 2020. Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13--18 July 2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119). PMLR, 5156--5165. http:\/\/proceedings.mlr.press\/v119\/katharopoulos20a.html"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2020.102022"},{"key":"e_1_3_2_1_22_1","volume-title":"Reformer: The Efficient Transformer. In 8th International Conference on Learning Representations, ICLR 2020","author":"Kitaev Nikita","year":"2020","unstructured":"Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient Transformer. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https:\/\/openreview.net\/forum?id=rkgNKkHtvB"},{"key":"e_1_3_2_1_23_1","volume-title":"Internet traffic and content consolidation. 77th Internet Engineering Task Force","author":"Labovitz Craig","year":"2010","unstructured":"Craig Labovitz, S Iekel-Johnson, D McPherson, J Oberheide, and F Jahanian. 2010. Internet traffic and content consolidation. 77th Internet Engineering Task Force (2010)."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/1190455.1190467"},{"key":"e_1_3_2_1_25_1","volume-title":"SPMamba: State-space model is all you need in speech separation. ArXiv preprint abs\/2404.02063","author":"Li Kai","year":"2024","unstructured":"Kai Li and Guo Chen. 2024. SPMamba: State-space model is all you need in speech separation. ArXiv preprint abs\/2404.02063 (2024). https:\/\/arxiv.org\/abs\/2404.02063"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/3485447.3512217"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/3419394.3423643"},{"key":"e_1_3_2_1_28_1","volume-title":"Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021","author":"Liu Hanxiao","year":"2021","unstructured":"Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. 2021. Pay Attention to MLPs. In Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (Eds.). 9204--9215. https:\/\/proceedings.neurips.cc\/paper\/2021\/hash\/4cc05b35c2f937c5bd9e7d41d3686fff-Abstract.html"},{"key":"e_1_3_2_1_29_1","volume-title":"Vmamba: Visual state space model. ArXiv preprint abs\/2401.10166","author":"Liu Yue","year":"2024","unstructured":"Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and Yunfan Liu. 2024. Vmamba: Visual state space model. ArXiv preprint abs\/2401.10166 (2024). https:\/\/arxiv.org\/abs\/2401.10166"},{"key":"e_1_3_2_1_30_1","volume-title":"U-mamba: Enhancing long-range dependency for biomedical image segmentation. ArXiv preprint abs\/2401.04722","author":"Ma Jun","year":"2024","unstructured":"Jun Ma, Feifei Li, and Bo Wang. 2024. U-mamba: Enhancing long-range dependency for biomedical image segmentation. ArXiv preprint abs\/2401.04722 (2024). https:\/\/arxiv.org\/abs\/2401.04722"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/3487552.3487842"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/952532.952601"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/382912.382923"},{"key":"e_1_3_2_1_34_1","volume-title":"Netgpt: Generative pretrained transformer for network traffic. ArXiv preprint abs\/2304.09513","author":"Meng Xuying","year":"2023","unstructured":"Xuying Meng, Chungang Lin, Yequan Wang, and Yujun Zhang. 2023. Netgpt: Generative pretrained transformer for network traffic. ArXiv preprint abs\/2304.09513 (2023). https:\/\/arxiv.org\/abs\/2304.09513"},{"key":"e_1_3_2_1_35_1","volume-title":"Kranthi Kiran GV, et al","author":"Peng Bo","year":"2023","unstructured":"Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. 2023. Rwkv: Reinventing rnns for the transformer era. ArXiv preprint abs\/2305.13048 (2023). https:\/\/arxiv.org\/abs\/2305.13048"},{"key":"e_1_3_2_1_36_1","volume-title":"TrafficGPT: Breaking the Token Barrier for Efficient Long Traffic Analysis and Generation. ArXiv preprint abs\/2403.05822","author":"Qu Jian","year":"2024","unstructured":"Jian Qu, Xiaobo Ma, and Jianfeng Li. 2024. TrafficGPT: Breaking the Token Barrier for Efficient Long Traffic Analysis and Generation. ArXiv preprint abs\/2403.05822 (2024). https:\/\/arxiv.org\/abs\/2403.05822"},{"key":"e_1_3_2_1_37_1","unstructured":"Alec Radford Jeffrey Wu Rewon Child David Luan Dario Amodei Ilya Sutskever et al. 2019. Language models are unsupervised multitask learners. OpenAI blog 1 8 (2019) 9."},{"key":"e_1_3_2_1_38_1","article-title":"Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer","volume":"21","author":"Raffel Colin","year":"2020","unstructured":"Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 21 (2020), 140:1--140:67. http:\/\/jmlr.org\/papers\/v21\/20-074.html","journal-title":"J. Mach. Learn. Res."},{"key":"e_1_3_2_1_39_1","volume-title":"Searching for activation functions. ArXiv preprint abs\/1710.05941","author":"Ramachandran Prajit","year":"2017","unstructured":"Prajit Ramachandran, Barret Zoph, and Quoc V Le. 2017. Searching for activation functions. ArXiv preprint abs\/1710.05941 (2017). https:\/\/arxiv.org\/abs\/1710.05941"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2018.12.012"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2019.06.005"},{"key":"e_1_3_2_1_42_1","volume-title":"Caduceus: Bi-directional equivariant long-range dna sequence modeling. ArXiv preprint abs\/2403.03234","author":"Schiff Yair","year":"2024","unstructured":"Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov. 2024. Caduceus: Bi-directional equivariant long-range dna sequence modeling. ArXiv preprint abs\/2403.03234 (2024). https:\/\/arxiv.org\/abs\/2403.03234"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.3390\/electronics12030516"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.3390\/e25050821"},{"key":"e_1_3_2_1_45_1","unstructured":"shramos. 2019. shramos\/pcap-splitter. https:\/\/github.com\/shramos\/pcap-splitter."},{"key":"e_1_3_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2010.25"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1145\/1012888.1005733"},{"key":"e_1_3_2_1_48_1","volume-title":"Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017","author":"Vaswani Ashish","year":"2017","unstructured":"Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998--6008. https:\/\/proceedings.neurips.cc\/paper\/2017\/hash\/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html"},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNET.2009.2020830"},{"key":"e_1_3_2_1_50_1","volume-title":"Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems","author":"Voelker Aaron","year":"2019","unstructured":"Aaron Voelker, Ivana Kajic, and Chris Eliasmith. 2019. Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alch\u00e9-Buc, Emily B. Fox, and Roman Garnett (Eds.). 15544--15553. https:\/\/proceedings.neurips.cc\/paper\/2019\/hash\/952285b9b7e7a1be5aa7849f32ffff05-Abstract.html"},{"key":"e_1_3_2_1_51_1","volume-title":"Lens: A Foundation Model for Network Traffic. ArXiv preprint abs\/2402.03646","author":"Wang Qineng","year":"2024","unstructured":"Qineng Wang, Chen Qian, Xiaochang Li, Ziyu Yao, and Huajie Shao. 2024. Lens: A Foundation Model for Network Traffic. ArXiv preprint abs\/2402.03646 (2024). https:\/\/arxiv.org\/abs\/2402.03646"},{"key":"e_1_3_2_1_52_1","volume-title":"NetMamba: Efficient Network Traffic Classification via Pre-training Unidirectional Mamba. ArXiv preprint abs\/2405.11449","author":"Wang Tongze","year":"2024","unstructured":"Tongze Wang, Xiaohui Xie, Wenduo Wang, Chuyi Wang, Youjian Zhao, and Yong Cui. 2024. NetMamba: Efficient Network Traffic Classification via Pre-training Unidirectional Mamba. ArXiv preprint abs\/2405.11449 (2024). https:\/\/arxiv.org\/abs\/2405.11449"},{"key":"e_1_3_2_1_53_1","volume-title":"Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation. ArXiv preprint abs\/2401.13560","author":"Xing Zhaohu","year":"2024","unstructured":"Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and Lei Zhu. 2024. Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation. ArXiv preprint abs\/2401.13560 (2024). https:\/\/arxiv.org\/abs\/2401.13560"},{"key":"e_1_3_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1"},{"key":"e_1_3_2_1_55_1","volume-title":"Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019","author":"Xu Lei","year":"2019","unstructured":"Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. 2019. Modeling Tabular data using Conditional GAN. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alch\u00e9-Buc, Emily B. Fox, and Roman Garnett (Eds.). 7333--7343. https:\/\/proceedings.neurips.cc\/paper\/2019\/hash\/254ed7d2de3b23ab10936522dd547b78-Abstract.html"},{"key":"e_1_3_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-87839-9_1"},{"key":"e_1_3_2_1_57_1","volume-title":"Benchmarking Mamba's Document Ranking Performance in the Era of Transformers. ArXiv preprint abs\/2403.18276","author":"RankMamba Zhichao Xu.","year":"2024","unstructured":"Zhichao Xu. 2024. RankMamba, Benchmarking Mamba's Document Ranking Performance in the Era of Transformers. ArXiv preprint abs\/2403.18276 (2024). https:\/\/arxiv.org\/abs\/2403.18276"},{"key":"e_1_3_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1145\/3544216.3544251"},{"key":"e_1_3_2_1_59_1","volume-title":"Trafficgpt: Viewing, processing and interacting with traffic foundation models. Transport Policy","author":"Zhang Siyao","year":"2024","unstructured":"Siyao Zhang, Daocheng Fu, Wenzhe Liang, Zhao Zhang, Bin Yu, Pinlong Cai, and Baozhen Yao. 2024. Trafficgpt: Viewing, processing and interacting with traffic foundation models. Transport Policy (2024)."},{"key":"e_1_3_2_1_60_1","unstructured":"Shihao Zhao Dongdong Chen Yen-Chun Chen Jianmin Bao Shaozhe Hao Lu Yuan and Kwan-Yee K. Wong. 2023. Uni-ControlNet: All-in-One Control to Text-to-Image Diffusion Models. https:\/\/arxiv.org\/abs\/2305.16322"}],"event":{"name":"ACM SIGCOMM '24: ACM SIGCOMM 2024 Conference","sponsor":["SIGCOMM ACM Special Interest Group on Data Communication"],"location":"Sydney NSW Australia","acronym":"ACM SIGCOMM '24"},"container-title":["Proceedings of the 2024 SIGCOMM Workshop on Networks for AI Computing"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3672198.3673792","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,24]],"date-time":"2024-11-24T06:54:32Z","timestamp":1732431272000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3672198.3673792"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8,4]]},"references-count":60,"alternative-id":["10.1145\/3672198.3673792","10.1145\/3672198"],"URL":"https:\/\/doi.org\/10.1145\/3672198.3673792","relation":{},"subject":[],"published":{"date-parts":[[2024,8,4]]},"assertion":[{"value":"2024-08-04","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}