{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:02:06Z","timestamp":1740103326163,"version":"3.37.3"},"publisher-location":"New York, NY, USA","reference-count":53,"publisher":"ACM","funder":[{"name":"the Postdoctoral Fellowship Program of CPSF","award":["No. GZB20230302"]},{"name":"the China Postdoctoral Science Foundation","award":["No. 2023M731596, 2023TQ0151"]},{"name":"the Jiangsu Funding Program for Excellent Postdoctoral Talent","award":["No. 2023ZB256"]},{"name":"the Natural Science Foundation of Jiangsu Province","award":["No. BK20211520"]},{"name":"the National Natural Science Foundation of China","award":["No. 62302208, 62222207, 62072245, and 62276134"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,10,28]]},"DOI":"10.1145\/3664647.3680755","type":"proceedings-article","created":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T06:59:41Z","timestamp":1729925981000},"page":"691-700","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["AdaFPP: Adapt-Focused Bi-Propagating Prototype Learning for Panoramic Activity Recognition"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0009-0006-2624-1234","authenticated-orcid":false,"given":"Meiqi","family":"Cao","sequence":"first","affiliation":[{"name":"Nanjing University of Science and Technology, Nanjing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0694-9458","authenticated-orcid":false,"given":"Rui","family":"Yan","sequence":"additional","affiliation":[{"name":"Nanjing University, Nanjing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4902-4663","authenticated-orcid":false,"given":"Xiangbo","family":"Shu","sequence":"additional","affiliation":[{"name":"Nanjing University of Science and Technology, Nanjing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4111-9334","authenticated-orcid":false,"given":"Guangzhao","family":"Dai","sequence":"additional","affiliation":[{"name":"Nanjing University of Science and Technology, Nanjing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0337-9410","authenticated-orcid":false,"given":"Yazhou","family":"Yao","sequence":"additional","affiliation":[{"name":"Nanjing University of Science and Technology, Nanjing, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5487-9845","authenticated-orcid":false,"given":"Guo-Sen","family":"Xie","sequence":"additional","affiliation":[{"name":"Nanjing University of Science and Technology, Nanjing, China"}]}],"member":"320","published-online":{"date-parts":[[2024,10,28]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/3581783.3612435"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58452-8_13"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW59228.2023.00544"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00807"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2023.3290594"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2020.3045636"},{"key":"e_1_3_2_1_7_1","unstructured":"Alexey Dosovitskiy Lucas Beyer Alexander Kolesnikov Dirk Weissenborn Xiaohua Zhai Thomas Unterthiner Mostafa Dehghani Matthias Minderer Georg Heigold Sylvain Gelly et al. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW54120.2021.00313"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3503161.3548546"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.02031"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00675"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00630"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00092"},{"key":"e_1_3_2_1_14_1","volume-title":"Yolox: Exceeding yolo series in","author":"Ge Zheng","year":"2021","unstructured":"Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-19772-7_15"},{"key":"e_1_3_2_1_16_1","volume-title":"COCO: performance assessment. arXiv preprint arXiv:1605.03560","author":"Hansen Nikolaus","year":"2016","unstructured":"Nikolaus Hansen, Anne Auger, Dimo Brockhoff, Dejan Tuar, and Tea Tu'ar. 2016. COCO: performance assessment. arXiv preprint arXiv:1605.03560 (2016)."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW53098.2021.00332"},{"key":"e_1_3_2_1_18_1","volume-title":"Proceedings of the AAAI Conference on Artificial Intelligence","volume":"36","author":"Huang Yecheng","year":"2022","unstructured":"Yecheng Huang, Jiaxin Chen, and Di Huang. 2022. UFPMP-Det: Toward accurate and efficient object detection on drone imagery. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 1026--1033."},{"key":"e_1_3_2_1_19_1","volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980","author":"Kingma Diederik P","year":"2014","unstructured":"Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.image.2022.116675"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2022.108645"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW50498.2020.00103"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.01341"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2022.3232373"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/3394171.3416298"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2021.3070543"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/3389189.3397991"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.5555\/2354409.2354807"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW54120.2021.00355"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2006.479"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2019.00084"},{"key":"e_1_3_2_1_32_1","volume-title":"Yie Tarng Chen, and Wen Hsien Fang","author":"Adhi Pramono Rizard Renanda","year":"2020","unstructured":"Rizard Renanda Adhi Pramono, Yie Tarng Chen, and Wen Hsien Fang. 2020. Empowering relational network by self-attention augmented conditional random fields for group activity recognition. 71--90."},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/3161174"},{"key":"e_1_3_2_1_34_1","unstructured":"Shaoqing Ren Kaiming He Ross Girshick and Jian Sun. 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems."},{"key":"e_1_3_2_1_35_1","volume-title":"International Conference on Machine Learning. 29441--29454","author":"Ryali Chaitanya","year":"2023","unstructured":"Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. 2023. Hiera: A hierarchical vision transformer without the bellsand-whistles. In International Conference on Machine Learning. 29441--29454."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2019.2942030"},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/WACV56688.2023.00594"},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3183112"},{"key":"e_1_3_2_1_39_1","volume-title":"Videomae: Masked autoencoders are data-efficient learners for self-supervised video pre-training.","author":"Tong Zhan","year":"2022","unstructured":"Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. 2022. Videomae: Masked autoencoders are data-efficient learners for self-supervised video pre-training. (2022), 10078--10093."},{"key":"e_1_3_2_1_40_1","unstructured":"Ashish Vaswani Noam Shazeer Niki Parmar Jakob Uszkoreit Llion Jones Aidan N Gomez \u0141ukasz Kaiser and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems. 5998--6008."},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01322"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01020"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52729.2023.01414"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00403"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01760"},{"key":"e_1_3_2_1_46_1","volume-title":"Adazoom: Adaptive zoom network for multi-scale object detection in large scenes.","author":"Xu Jingtao","year":"2021","unstructured":"Jingtao Xu, Yali Li, and Shengjin Wang. 2021. Adazoom: Adaptive zoom network for multi-scale object detection in large scenes. (2021)."},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1145\/3240508.3240572"},{"key":"e_1_3_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2020.3034233"},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2019.00840"},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01367"},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i4.16437"},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01439"},{"key":"e_1_3_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01323"}],"event":{"name":"MM '24: The 32nd ACM International Conference on Multimedia","sponsor":["SIGMM ACM Special Interest Group on Multimedia"],"location":"Melbourne VIC Australia","acronym":"MM '24"},"container-title":["Proceedings of the 32nd ACM International Conference on Multimedia"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3664647.3680755","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,4]],"date-time":"2024-11-04T04:19:51Z","timestamp":1730693991000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3664647.3680755"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,28]]},"references-count":53,"alternative-id":["10.1145\/3664647.3680755","10.1145\/3664647"],"URL":"https:\/\/doi.org\/10.1145\/3664647.3680755","relation":{},"subject":[],"published":{"date-parts":[[2024,10,28]]},"assertion":[{"value":"2024-10-28","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}