{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T11:40:34Z","timestamp":1719834034536},"reference-count":15,"publisher":"Association for Computing Machinery (ACM)","issue":"3","funder":[{"DOI":"10.13039\/501100001659","name":"German Research Foundation","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Germany\u2019s Excellence Strategy - EXC 2050\/1","award":["390696704"]},{"name":"Cluster of Excellence \u201cCentre for Tactile Internet with Human-in-the-Loop\u201d (CeTI) of Technische Universit\u00e4t Dresden"},{"name":"German Federal Ministry of Education and Research"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Trans. Reconfigurable Technol. Syst."],"published-print":{"date-parts":[[2024,9,30]]},"abstract":"As runtime reconfiguration is used in an increasing number of hardware architectures, new simulation and modeling tools are needed to support the developer during the design phases. In this article, a language extension for SystemC is presented, together with a design methodology for the description and simulation of dynamically reconfigurable hardware at different levels of abstraction. The library presented offers a high degree of flexibility in the description of reconfiguration features and their management, while allowing runtime reconfiguration simulation, removal, and replacement of custom modules as well as third-party components throughout the architecture development process. In addition, our approach supports the emerging concept of nested reconfiguration and split regions with a minimal simulation overhead of a maximum of three delta cycles for signal and transaction forwarding, and four delta cycles for the reconfiguration process.<\/jats:p>","DOI":"10.1145\/3662001","type":"journal-article","created":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T09:27:31Z","timestamp":1714210051000},"page":"1-29","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling"],"prefix":"10.1145","volume":"17","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8604-0139","authenticated-orcid":false,"given":"Julian","family":"Haase","sequence":"first","affiliation":[{"name":"Chair of Adaptive Dynamic Systems, Technische Universit\u00e4t Dresden, Dresden, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5005-0928","authenticated-orcid":false,"given":"Najdet","family":"Charaf","sequence":"additional","affiliation":[{"name":"Chair of Adaptive Dynamic Systems, Technische Universit\u00e4t Dresden, Dresden, Germany and Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden\/Leipzig, Dresden, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0009-0004-7516-0479","authenticated-orcid":false,"given":"Alexander","family":"Gro\u00df","sequence":"additional","affiliation":[{"name":"Chair of Adaptive Dynamic Systems, Technische Universit\u00e4t Dresden, Dresden, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2571-8441","authenticated-orcid":false,"given":"Diana","family":"G\u00f6hringer","sequence":"additional","affiliation":[{"name":"Chair of Adaptive Dynamic Systems, Technische Universit\u00e4t Dresden, Dresden, Germany, Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden\/Leipzig, Dresden, Germany, and Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universit\u00e4t Dresden, Dresden, Germany"}]}],"member":"320","published-online":{"date-parts":[[2024,7]]},"reference":[{"key":"e_1_3_2_2_2","doi-asserted-by":"publisher","unstructured":"J\u00fcrgen Teich. 2012. Hardware\/Software Codesign: The past the present and predicting the future. Proceedings of the IEEE 100 Special Centennial Issue (2012) 1411\u20131430. DOI:10.1109\/JPROC.2011.2182009","DOI":"10.1109\/JPROC.2011.2182009"},{"key":"e_1_3_2_3_2","doi-asserted-by":"publisher","unstructured":"Amr Hassan Hassan Mostafa and Hossam A.H. Fahmy. 2018. NoC-DPR: A new simulation tool exploiting the dynamic partial reconfiguration (DPR) on network-on-chip (NoC) based FPGA. Integration 63 (2018) 204\u2013212. DOI:10.1016\/j.vlsi.2018.04.003","DOI":"10.1016\/j.vlsi.2018.04.003"},{"key":"e_1_3_2_4_2","unstructured":"Xilinx. 2024. Vivado Design Suite User Guide - Dynamic Function eXchange. (2024). Retrieved 10-April-2024 from https:\/\/www.xilinx.com\/content\/dam\/xilinx\/support\/documents\/sw_manuals\/xilinx2022_2\/ug909-vivado-partial-reconfiguration.pdf"},{"key":"e_1_3_2_5_2","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM53951.2022.9786106"},{"key":"e_1_3_2_6_2","doi-asserted-by":"publisher","DOI":"10.1109\/IEEESTD.2012.6134619"},{"key":"e_1_3_2_7_2","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS.2003.1213321"},{"key":"e_1_3_2_8_2","doi-asserted-by":"publisher","DOI":"10.4304\/jcp.3.2.55-62"},{"key":"e_1_3_2_9_2","doi-asserted-by":"publisher","DOI":"10.1109\/DASIP.2011.6136897"},{"key":"e_1_3_2_10_2","doi-asserted-by":"publisher","DOI":"10.1145\/1297666.1297681"},{"key":"e_1_3_2_11_2","doi-asserted-by":"publisher","DOI":"10.1109\/FCCM.2011.18"},{"key":"e_1_3_2_12_2","doi-asserted-by":"publisher","DOI":"10.1109\/SAMOS.2013.6621108"},{"key":"e_1_3_2_13_2","doi-asserted-by":"publisher","DOI":"10.1109\/DATE.2009.5090805"},{"key":"e_1_3_2_14_2","unstructured":"Carlo Amicucci Fabrizio Ferrandi Marco Santambrogio and Donatella Sciuto. 2006. SyCERS: A SystemC design exploration framework for SoC reconfigurable architecture. In Proceedings of the International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA\u201906) Las Vegas Nevada USA 63\u201369."},{"key":"e_1_3_2_15_2","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/978-3-319-16214-0_13","volume-title":"Applied Reconfigurable Computing","author":"Pe\u00f1a Xerach","year":"2015","unstructured":"Xerach Pe\u00f1a, Fernando Rincon, Julio Dondo, Julian Caba, and Juan Carlos Lopez. 2015. Run-time partial reconfiguration simulation framework based on dynamically loadable components. In Applied Reconfigurable Computing. Kentaro Sano, Dimitrios Soudris, Michael H\u00fcbner, and Pedro C. Diniz (Eds.), Springer International Publishing, Cham, 153\u2013164."},{"key":"e_1_3_2_16_2","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPSW52791.2021.00033"}],"container-title":["ACM Transactions on Reconfigurable Technology and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3662001","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T11:19:01Z","timestamp":1719832741000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3662001"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7]]},"references-count":15,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2024,9,30]]}},"alternative-id":["10.1145\/3662001"],"URL":"https:\/\/doi.org\/10.1145\/3662001","relation":{},"ISSN":["1936-7406","1936-7414"],"issn-type":[{"value":"1936-7406","type":"print"},{"value":"1936-7414","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,7]]},"assertion":[{"value":"2023-07-11","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2024-04-05","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2024-07-01","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}