{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:48:19Z","timestamp":1730328499419,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":51,"publisher":"ACM","funder":[{"DOI":"10.13039\/https:\/\/doi.org\/10.13039\/100019180","name":"HORIZON EUROPE European Research Council","doi-asserted-by":"publisher","award":["804388"],"id":[{"id":"10.13039\/https:\/\/doi.org\/10.13039\/100019180","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,6,3]]},"DOI":"10.1145\/3656650.3656689","type":"proceedings-article","created":{"date-parts":[[2024,5,31]],"date-time":"2024-05-31T22:27:17Z","timestamp":1717194437000},"page":"1-9","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Diffusion-Based Unsupervised Pre-training for Automated Recognition of Vitality Forms"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0009-0002-0730-8385","authenticated-orcid":false,"given":"Noemi","family":"Canovi","sequence":"first","affiliation":[{"name":"Department of Information Engineering and Computer Science, University of Trento, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0009-0000-7092-7053","authenticated-orcid":false,"given":"Federico","family":"Montagna","sequence":"additional","affiliation":[{"name":"Department of Information Engineering and Computer Science, University of Trento, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0476-0803","authenticated-orcid":false,"given":"Radoslaw","family":"Niewiadomski","sequence":"additional","affiliation":[{"name":"Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1056-3398","authenticated-orcid":false,"given":"Alessandra","family":"Sciutti","sequence":"additional","affiliation":[{"name":"CONTACT, Istituto Italiano di Tecnologia, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3666-8059","authenticated-orcid":false,"given":"Giuseppe","family":"Di Cesare","sequence":"additional","affiliation":[{"name":"Department of Medicine and Surgery, University of Parma, Italy and CONTACT, Istituto Italiano di Tecnologia, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9583-0087","authenticated-orcid":false,"given":"Cigdem","family":"Beyan","sequence":"additional","affiliation":[{"name":"Department of Computer Science, University of Verona, Italy"}]}],"member":"320","published-online":{"date-parts":[[2024,6,3]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/3503161.3548363"},{"key":"e_1_3_2_1_2_1","volume-title":"Expression of emotion in the kinematics of locomotion. Experimental brain research 225","author":"Barliya Avi","year":"2013","unstructured":"Avi Barliya, Lars Omlor, Martin\u00a0A Giese, Alain Berthoz, and Tamar Flash. 2013. Expression of emotion in the kinematics of locomotion. Experimental brain research 225 (2013), 159\u2013176."},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/TAFFC.2021.3095425"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123404"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/3626516"},{"key":"e_1_3_2_1_6_1","volume-title":"OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields","author":"Cao Z.","year":"2019","unstructured":"Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y.\u00a0A. Sheikh. 2019. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10579-007-9057-1"},{"key":"e_1_3_2_1_8_1","volume-title":"Diffusiondet: Diffusion model for object detection. arXiv preprint:2211.09788","author":"Chen S.","year":"2022","unstructured":"S. Chen, P. Sun, Y. Song, and P. Luo. 2022. Diffusiondet: Diffusion model for object detection. arXiv preprint:2211.09788 (2022)."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1068\/p7364"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-68560-1_49"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1093\/cercor"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.3389\/fnhum.2017.00565"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1093\/scan"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2023.3308047"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/SocialCom-PASSAT.2012.48"},{"key":"e_1_3_2_1_16_1","volume-title":"2022. DiffusionInst: Diffusion Model for Instance Segmentation. arXiv preprint:2212.02773","author":"Gu Zhangxuan","year":"2022","unstructured":"Zhangxuan Gu, Haoxing Chen, Zhuoer Xu, and Lan et al.2022. DiffusionInst: Diffusion Model for Instance Segmentation. arXiv preprint:2212.02773 (2022)."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/ROMAN.2005.1513794"},{"key":"e_1_3_2_1_18_1","first-page":"6840","article-title":"Denoising diffusion probabilistic models","volume":"33","author":"Ho J.","year":"2020","unstructured":"J. Ho, A. Jain, and P. Abbeel. 2020. Denoising diffusion probabilistic models. NeurIPS 33 (2020), 6840\u20136851.","journal-title":"NeurIPS"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/THMS.2019.2900337"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.01113"},{"key":"e_1_3_2_1_21_1","volume-title":"A novel geometric framework on gram matrix trajectories for human behavior understanding","author":"Kacem Anis","year":"2018","unstructured":"Anis Kacem, Mohamed Daoudi, Boulbaba\u00a0Ben Amor, Stefano Berretti, and Juan\u00a0Carlos Alvarez-Paiva. 2018. A novel geometric framework on gram matrix trajectories for human behavior understanding. IEEE transactions on pattern analysis and machine intelligence 42, 1 (2018), 1\u201314."},{"key":"e_1_3_2_1_22_1","unstructured":"T. Karras M. Aittala Timo Aila and Samuli Laine. 2022. Elucidating the Design Space of Diffusion-Based Generative Models. In NeurIPS."},{"key":"e_1_3_2_1_23_1","volume-title":"Unsupervised multimodal language representations using convolutional autoencoders. arXiv preprint arXiv:2110.03007","author":"Koromilas Panagiotis","year":"2021","unstructured":"Panagiotis Koromilas and Theodoros Giannakopoulos. 2021. Unsupervised multimodal language representations using convolutional autoencoders. arXiv preprint arXiv:2110.03007 (2021)."},{"key":"e_1_3_2_1_24_1","unstructured":"Rudolf Laban and Frederick\u00a0Charles Lawrence. 1947. Effort. Macdonald & Evans."},{"key":"e_1_3_2_1_25_1","volume-title":"AudioLDM: Text-to-Audio Generation with Latent Diffusion Models. arXiv preprint arXiv:2301.12503","author":"Liu Haohe","year":"2023","unstructured":"Haohe Liu, Zehua Chen, and Yi\u00a0et\u00a0al. Yuan. 2023. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models. arXiv preprint arXiv:2301.12503 (2023)."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/TAFFC.2022.3226252"},{"key":"e_1_3_2_1_27_1","volume-title":"SIGMAP 2009 - International Conference on Signal Processing and Multimedia Applications, Proceedings, 62\u201367","author":"Mazzarino Barbara","year":"2009","unstructured":"Barbara Mazzarino and Maurizio Mancini. 2009. The Need for Impulsivity & Smoothness - Improving HCI by Qualitatively Measuring New High-Level Human Motion Features. SIGMAP 2009 - International Conference on Signal Processing and Multimedia Applications, Proceedings, 62\u201367."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/TOH.2022.3230643"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"crossref","unstructured":"R. Niewiadomski M. Mancini and S. Piana. 2013. Human and virtual agent expressive gesture quality analysis and synthesis. In Coverbal Synchrony in Human-Machine Interaction M.\u00a0Rojc and N.\u00a0Campbell (Eds.). CRC Press 269\u2013292.","DOI":"10.1201\/b15477-12"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/3136755.3136757"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1145\/2808435.2808466"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijhcs.2010.07.004"},{"key":"e_1_3_2_1_33_1","volume-title":"Vitality forms analysis and automatic recognition. Authorea Preprints","author":"Niewiadomski Radoslaw","year":"2023","unstructured":"Radoslaw Niewiadomski, Amrita Suresh, Alessandra Sciutti, and Giuseppe\u00a0Di Cesare. 2023. Vitality forms analysis and automatic recognition. Authorea Preprints (2023)."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2022.3229478"},{"key":"e_1_3_2_1_35_1","volume-title":"Unsupervised Human Action Recognition with Skeletal Graph Laplacian and Self-Supervised Viewpoints Invariance. In The 32nd British Machine Vision Conference (BMVC).","author":"Paoletti Giancarlo","year":"2021","unstructured":"Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, and Alessio Del\u00a0Bue. 2021. Unsupervised Human Action Recognition with Skeletal Graph Laplacian and Self-Supervised Viewpoints Invariance. In The 32nd British Machine Vision Conference (BMVC)."},{"volume-title":"Proceedings of the AAAI conference on artificial intelligence, Vol.\u00a032","author":"Perez E.","key":"e_1_3_2_1_36_1","unstructured":"E. Perez, F. Strub, H. De\u00a0Vries, V. Dumoulin, and A. Courville. 2018. Film: Visual reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence, Vol.\u00a032."},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1145\/2818740"},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/2790994.2791009"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1007\/s12369-023-01026-9"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuropsychologia.2013.06.002"},{"key":"e_1_3_2_1_41_1","volume-title":"Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487","author":"Saharia Chitwan","year":"2022","unstructured":"Chitwan Saharia, William Chan, and Saurabh et\u00a0al. Saxena. 2022. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487 (2022)."},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACII.2013.63"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1145\/1957656.1957781"},{"key":"e_1_3_2_1_44_1","volume-title":"Proceedings ninth IEEE international conference on computer vision. IEEE, 1470\u20131477","author":"Zisserman Sivic","year":"2003","unstructured":"Sivic and Zisserman. 2003. Video Google: A text retrieval approach to object matching in videos. In Proceedings ninth IEEE international conference on computer vision. IEEE, 1470\u20131477."},{"key":"e_1_3_2_1_45_1","unstructured":"Daniel\u00a0N. Stern. 1999. Vitality contours: The temporal contour of feelings as a basic unit for constructing the infant\u2019s social experience.. In Early social cognition: Understanding others in the first months of life. 67\u201380."},{"volume-title":"Forms of vitality exploring dynamic experience in psychology, arts, psychotherapy, and development","author":"Stern N.","key":"e_1_3_2_1_46_1","unstructured":"Daniel\u00a0N. Stern. 2010. Forms of vitality exploring dynamic experience in psychology, arts, psychotherapy, and development. Oxford University Press."},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP49359.2023.10222594"},{"key":"e_1_3_2_1_48_1","volume-title":"Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations. In International Conference on Image Analysis and Processing. Springer, 49\u201362","author":"Tur Anil\u00a0Osman","year":"2023","unstructured":"Anil\u00a0Osman Tur, Nicola Dall\u2019Asen, Cigdem Beyan, and Elisa Ricci. 2023. Unsupervised Video Anomaly Detection with Diffusion Models Conditioned on Compact Motion Representations. In International Conference on Image Analysis and Processing. Springer, 49\u201362."},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"crossref","unstructured":"Giovanna Varni and Maurizio Mancini. 2020. Movement Expressivity Analysis: From Theory to Computation. 213\u2013233. https:\/\/doi.org\/10.1007\/\/978-3-030-46732-6_11","DOI":"10.1007\/978-3-030-46732-6_11"},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/TAFFC.2023.3305197"},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV51070.2023.01736"}],"event":{"name":"AVI 2024: International Conference on Advanced Visual Interfaces 2024","acronym":"AVI 2024","location":"Arenzano, Genoa Italy"},"container-title":["Proceedings of the 2024 International Conference on Advanced Visual Interfaces"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3656650.3656689","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,3]],"date-time":"2024-06-03T16:36:20Z","timestamp":1717432580000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3656650.3656689"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6,3]]},"references-count":51,"alternative-id":["10.1145\/3656650.3656689","10.1145\/3656650"],"URL":"https:\/\/doi.org\/10.1145\/3656650.3656689","relation":{},"subject":[],"published":{"date-parts":[[2024,6,3]]},"assertion":[{"value":"2024-06-03","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}