{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:55:21Z","timestamp":1740102921069,"version":"3.37.3"},"publisher-location":"New York, NY, USA","reference-count":27,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,11,17]]},"DOI":"10.1145\/3652628.3652734","type":"proceedings-article","created":{"date-parts":[[2024,5,23]],"date-time":"2024-05-23T14:36:46Z","timestamp":1716475006000},"page":"636-641","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Application of Stock Trading-Related Emotion Recognition from EEG Signals using Deep Learning EEGNet"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0009-0005-0416-5907","authenticated-orcid":false,"given":"Mingliang","family":"Zuo","sequence":"first","affiliation":[{"name":"School of Health Science and Engineering, University of Shanghai for Science and Technology, China"}]},{"ORCID":"https:\/\/orcid.org\/0009-0008-6423-7353","authenticated-orcid":false,"given":"Fei","family":"Wang","sequence":"additional","affiliation":[{"name":"Sino-German College, University of Shanghai for Science and Technology, China"}]}],"member":"320","published-online":{"date-parts":[[2024,5,23]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"Neumann K. 2021. System for matching emotional pattern has computing device for generating emotional therapy as function of current user emotional state current user state data wellbeing model and transmitting emotional therapy to user. U.S. Patent Application No. US2021407638-A1."},{"key":"e_1_3_2_1_2_1","volume-title":"In\u00a0Proceedings of 2013 3rd international conference on computer science and network technology\u00a0(pp. 1247-1250)","author":"Zhao X.","year":"2013","unstructured":"Zhao, X., Zhou, C., & Huang, W. 2013, October. Smart home power management system design based on human-computer interaction model. In\u00a0Proceedings of 2013 3rd international conference on computer science and network technology\u00a0(pp. 1247-1250). IEEE."},{"key":"e_1_3_2_1_3_1","volume-title":"Deploying Machine Learning Techniques for Human Emotion Detection. Computational intelligence and neuroscience","author":"Siam A. I.","year":"2022","unstructured":"Siam, A. I., Soliman, N. F., Algarni, A. D., Abd El-Samie, F. E., & Sedik, A. 2022. Deploying Machine Learning Techniques for Human Emotion Detection. Computational intelligence and neuroscience, 2022, 8032673."},{"key":"e_1_3_2_1_4_1","unstructured":"Xia S. 2022. Method for controlling brain-computer interface device involves controlling to-be-controlled brain-computer interface device to enter wake-up state from silent state after receiving steady-state visual evoked potential. Chinese Patent Application No. CN114721500-A."},{"key":"e_1_3_2_1_5_1","unstructured":"Lahane P. & Mythili T. 2017. Method for improving person health by using electroencephalography signal (EEG) data set based on brain computer interface (BCI) technique involves acquiring EEG from dataset for emotion analysis using physiological signals (DEAP) dataset. Indian Patent Application No. IN201721040348-A."},{"key":"e_1_3_2_1_6_1","unstructured":"Qin X. Wang Z. Ji C. Yang P. Li M. Shen Y. Hu J. Wang M. & Wang P. 2020. Method useful for recognizing emotions based on width learning visual evoked potentials comprises evaluating adaptability of IAPS collecting EEG generated based on visual evoked and pre-processing data by band-pass filtering method. Chinese Patent Application No. CN110946576-A."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.3171\/2010.9.JNS10668"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"crossref","unstructured":"Cardona-Alvarez Y. N. Alvarez-Meza A. M. Cardenas-Pena D. A. Castano-Duque G. A. & Castellanos-Dominguez G. 2023. A novel OpenBCI framework for EEG-based neurophysiological experiments. Sensors 23(7).","DOI":"10.3390\/s23073763"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3035539"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICT4M.2016.072"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"crossref","unstructured":"Torres E. P. Torres H. E. Hernandez-Alvarez M. & Guun Y. S. 2021. EEG-Based BCI emotion recognition using the Stock-Emotion Dataset.","DOI":"10.1007\/978-3-030-63665-4_18"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN48605.2020.9207100"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"crossref","unstructured":"Miki K. Morioka T. Sakata A. Noguchi N. Mori M. Yamada T. Kai Y. & Natori Y. 2019. Initial experience of a telemetry EEG amplifier (Headset\u2122) in the emergent diagnosis of nonconvulsive status epilepticus. Interdisciplinary Neurosurgery-Advanced Techniques and Case Management 18.","DOI":"10.1016\/j.inat.2019.100486"},{"key":"e_1_3_2_1_14_1","unstructured":"Jun S. C. Ahn M. K. Cho H. H. & Ahn S. T. (Date of publication). Method for enhancing reliability of brain computer interface (BCI) system for recognizing nerve pattern of head. South Korean Patent KR1553256-B1."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/CogInfoCom.2013.6719295"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/MIPR49039.2020.00078"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-smt.2018.5237"},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/IECBES.2014.7047643"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/NER.2013.6695876"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2946240"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0138297"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2018.8545104"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compag.2017.06.009"},{"key":"e_1_3_2_1_24_1","unstructured":"Barker A. E. Z. 2020. Promoting healthy Internet gaming among preadolescent youth: A DBT-informed program."},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1080\/10503307.2015.1076202"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"crossref","unstructured":"Tobon-Henao M. Alvarez-Meza A. M. & Castellanos-Dominguez C. G. 2023. Kernel-based regularized EEGNet using centered alignment and Gaussian connectivity for motor imagery discrimination. Computers 12(7).","DOI":"10.3390\/computers12070145"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"crossref","unstructured":"Sohaib A. T. Qureshi S. Hagelback J. Hilborn O. & Jercic P. 2013. Evaluating classifiers for emotion recognition using EEG.","DOI":"10.1007\/978-3-642-39454-6_53"}],"event":{"name":"ICAICE 2023: The 4th International Conference on Artificial Intelligence and Computer Engineering","acronym":"ICAICE 2023","location":"Dalian China"},"container-title":["Proceedings of the 4th International Conference on Artificial Intelligence and Computer Engineering"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3652628.3652734","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,24]],"date-time":"2024-05-24T13:39:42Z","timestamp":1716557982000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3652628.3652734"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,17]]},"references-count":27,"alternative-id":["10.1145\/3652628.3652734","10.1145\/3652628"],"URL":"https:\/\/doi.org\/10.1145\/3652628.3652734","relation":{},"subject":[],"published":{"date-parts":[[2023,11,17]]},"assertion":[{"value":"2024-05-23","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}