{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T05:26:31Z","timestamp":1731043591051,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":13,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,6,23]]},"DOI":"10.1145\/3649329.3656232","type":"proceedings-article","created":{"date-parts":[[2024,11,7]],"date-time":"2024-11-07T19:27:22Z","timestamp":1731007642000},"page":"1-6","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["CDLS: Constraint Driven Generative AI Framework for Analog Layout Synthesis"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0009-0000-3396-0882","authenticated-orcid":false,"given":"Prasanth","family":"Mangalagiri","sequence":"first","affiliation":[{"name":"Intel Corporation, Santa Clara, CA, United States"}]},{"ORCID":"http:\/\/orcid.org\/0009-0009-3610-3523","authenticated-orcid":false,"given":"Lynn","family":"Qian","sequence":"additional","affiliation":[{"name":"Intel Corporation, Santa Clara, CA, United States"}]},{"ORCID":"http:\/\/orcid.org\/0009-0009-4602-8459","authenticated-orcid":false,"given":"Farrukh","family":"Zafar","sequence":"additional","affiliation":[{"name":"Intel Corporation, Santa Clara, CA, United States"}]},{"ORCID":"http:\/\/orcid.org\/0009-0002-2948-6289","authenticated-orcid":false,"given":"Praveen","family":"Mosalikanti","sequence":"additional","affiliation":[{"name":"Intel Corporation, Hillsboro, OR, United States"}]},{"ORCID":"http:\/\/orcid.org\/0009-0003-9450-3599","authenticated-orcid":false,"given":"Phoebe","family":"Chang","sequence":"additional","affiliation":[{"name":"Intel Corporation, Santa Clara, CA, United States"}]},{"ORCID":"http:\/\/orcid.org\/0009-0005-9258-1328","authenticated-orcid":false,"given":"Arun","family":"Kurian","sequence":"additional","affiliation":[{"name":"Intel Corporation, Folsom, CA, United States"}]},{"ORCID":"http:\/\/orcid.org\/0009-0001-8033-8866","authenticated-orcid":false,"given":"Vinay","family":"Saripalli","sequence":"additional","affiliation":[{"name":"Intel Corporation, Santa Clara, CA, United States"}]}],"member":"320","published-online":{"date-parts":[[2024,11,7]]},"reference":[{"key":"e_1_3_2_1_1_1","first-page":"1","volume-title":"Berkeley analog generator with layout optimizer boosted with deep neural networks.\" In 2019 IEEE\/ACM International Conference on Computer-Aided Design (ICCAD)","author":"Hakhamaneshi Kourosh","year":"2019","unstructured":"Hakhamaneshi, Kourosh, Nick Werblun, Pieter Abbeel, and Vladimir Stojanovi\u0107. \"BagNet: Berkeley analog generator with layout optimizer boosted with deep neural networks.\" In 2019 IEEE\/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1--8. IEEE, 2019."},{"key":"e_1_3_2_1_2_1","first-page":"1","article-title":"ALIGN: Open-source analog layout automation from the ground up","author":"Kunal Kishor","year":"2019","unstructured":"Kunal, Kishor, et al \"ALIGN: Open-source analog layout automation from the ground up.\" In Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1--4. 2019.","journal-title":"Proceedings of the 56th Annual Design Automation Conference"},{"key":"e_1_3_2_1_3_1","volume-title":"Ieee","author":"Zhang Zijun","year":"2018","unstructured":"Zhang, Zijun. \"Improved adam optimizer for deep neural networks.\" In 2018 IEEE\/ACM 26th international symposium on quality of service (IWQoS), pp. 1--2. Ieee, 2018."},{"key":"e_1_3_2_1_4_1","unstructured":"Fey Matthias and Jan Eric Lenssen. \"Fast graph representation learning with PyTorch Geometric.\" arXiv preprint arXiv:1903.02428 (2019)."},{"key":"e_1_3_2_1_5_1","volume-title":"Pytorch: An imperative style, high-performance deep learning library.\" Advances in neural information processing systems 32","author":"Paszke Adam","year":"2019","unstructured":"Paszke, Adam, et al. \"Pytorch: An imperative style, high-performance deep learning library.\" Advances in neural information processing systems 32 (2019)."},{"key":"e_1_3_2_1_6_1","volume-title":"Attention is all you need.\" Advances in neural information processing systems 30","year":"2017","unstructured":"Vaswani et al \"Attention is all you need.\" Advances in neural information processing systems 30 (2017)."},{"key":"e_1_3_2_1_7_1","unstructured":"Kipf Thomas N. and Max Welling. \"Semi-supervised classification with graph convolutional networks.\" arXiv preprint arXiv:1609.02907 (2016)."},{"key":"e_1_3_2_1_8_1","volume-title":"et al \"Graph attention networks.\" arXiv preprint arXiv:1710.10903","author":"Veli\u010dkovi\u0107 Petar","year":"2017","unstructured":"Veli\u010dkovi\u0107, Petar, et al \"Graph attention networks.\" arXiv preprint arXiv:1710.10903 (2017)."},{"key":"e_1_3_2_1_9_1","volume-title":"Incline Village, NV)","author":"IBM","year":"2017","unstructured":"IBM (2017) IBM ILOG CPLEX 12.7 User's Manual (IBM ILOG CPLEX Division, Incline Village, NV)"},{"key":"e_1_3_2_1_10_1","unstructured":"Veli\u010dkovi\u0107 Petar Guillem Cucurull Arantxa Casanova Adriana Romero Pietro Lio and Yoshua Bengio. \"Graph attention networks.\" arXiv preprint arXiv:1710.10903 (2017)."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939785"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCAD.2010.2097172"},{"key":"e_1_3_2_1_13_1","volume-title":"Analog layout synthesis: a survey of topological approaches","author":"Graeb Helmut E","year":"2010","unstructured":"Graeb, Helmut E., ed. Analog layout synthesis: a survey of topological approaches. Springer Science & Business Media, 2010."}],"event":{"name":"DAC '24: 61st ACM\/IEEE Design Automation Conference","location":"San Francisco CA USA","acronym":"DAC '24","sponsor":["SIGDA ACM Special Interest Group on Design Automation","IEEE-CEDA","SIGBED ACM Special Interest Group on Embedded Systems"]},"container-title":["Proceedings of the 61st ACM\/IEEE Design Automation Conference"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3649329.3656232","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,7]],"date-time":"2024-11-07T19:46:42Z","timestamp":1731008802000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3649329.3656232"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6,23]]},"references-count":13,"alternative-id":["10.1145\/3649329.3656232","10.1145\/3649329"],"URL":"https:\/\/doi.org\/10.1145\/3649329.3656232","relation":{},"subject":[],"published":{"date-parts":[[2024,6,23]]},"assertion":[{"value":"2024-11-07","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}