{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:01:20Z","timestamp":1740103280023,"version":"3.37.3"},"publisher-location":"New York, NY, USA","reference-count":31,"publisher":"ACM","funder":[{"DOI":"10.13039\/https:\/\/doi.org\/10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62172102"],"id":[{"id":"10.13039\/https:\/\/doi.org\/10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,10,21]]},"DOI":"10.1145\/3627673.3679714","type":"proceedings-article","created":{"date-parts":[[2024,10,20]],"date-time":"2024-10-20T19:34:11Z","timestamp":1729452851000},"page":"120-129","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Discovering Denial Constraints Based on Deep Reinforcement Learning"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0009-0007-2023-142X","authenticated-orcid":false,"given":"Lingfeng","family":"Bian","sequence":"first","affiliation":[{"name":"Fudan University, Shanghai, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6473-9272","authenticated-orcid":false,"given":"Weidong","family":"Yang","sequence":"additional","affiliation":[{"name":"Fudan University & Zhuhai Fudan Innovation Research Institute, Shanghai, China"}]},{"ORCID":"https:\/\/orcid.org\/0009-0003-6474-2695","authenticated-orcid":false,"given":"Jingyi","family":"Xu","sequence":"additional","affiliation":[{"name":"Fudan University & AVIC United Technology Center for Basic Research on Aircraft System Fault Diagnosis and Health Management, Shanghai, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6332-780X","authenticated-orcid":false,"given":"Zijing","family":"Tan","sequence":"additional","affiliation":[{"name":"Fudan University, Shanghai, China"}]}],"member":"320","published-online":{"date-parts":[[2024,10,21]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.14778\/2850578.2850579"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107637"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.14778\/3157794.3157800"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"crossref","unstructured":"Philip Bohannon Wenfei Fan Floris Geerts Xibei Jia and Anastasios Kementsietsidis. 2007. Conditional functional dependencies for data cleaning. In ICDE. 746--755.","DOI":"10.1109\/ICDE.2007.367920"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.14778\/2536258.2536262"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"crossref","unstructured":"Xu Chu Ihab F. Ilyas and Paolo Papotti. 2013. Holistic data cleaning: Putting violations into context. In ICDE.","DOI":"10.1109\/ICDE.2013.6544847"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"crossref","unstructured":"Michele Dallachiesa Amr Ebaid Ahmed Eldawy Ahmed K. Elmagarmid Ihab F. Ilyas Mourad Ouzzani and Nan Tang. 2013. NADEEF: a commodity data cleaning system. In SIGMOD.","DOI":"10.1145\/2463676.2465327"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2010.154"},{"key":"e_1_3_2_1_9_1","first-page":"1","article-title":"Discovering Top-k Rules using Subjective and Objective Criteria","volume":"1","author":"Fan Wenfei","year":"2023","unstructured":"Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2023. Discovering Top-k Rules using Subjective and Objective Criteria. Proceedings of the ACM on Management of Data, Vol. 1, 1 (2023), 1--29.","journal-title":"Proceedings of the ACM on Management of Data"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.14778\/3594512.3594524"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00778-019-00586-5"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"crossref","unstructured":"Stella Giannakopoulou Manos Karpathiotakis and Anastasia Ailamaki. 2020. Cleaning Denial Constraint Violations through Relaxation. In SIGMOD. 805--815.","DOI":"10.1145\/3318464.3389775"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"crossref","unstructured":"Amir Gilad Daniel Deutch and Sudeepa Roy. 2020. On Multiple Semantics for Declarative Database Repairs. In SIGMOD. 817--831.","DOI":"10.1145\/3318464.3389721"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/1526709.1526761"},{"volume-title":"Breakthroughs in statistics: Methodology and distribution","author":"Huber Peter J","key":"e_1_3_2_1_15_1","unstructured":"Peter J Huber. 1992. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology and distribution. Springer, 492--518."},{"key":"e_1_3_2_1_16_1","volume-title":"Learning combinatorial optimization algorithms over graphs. Advances in neural information processing systems","author":"Khalil Elias","year":"2017","unstructured":"Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learning combinatorial optimization algorithms over graphs. Advances in neural information processing systems, Vol. 30 (2017)."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"crossref","unstructured":"Zuhair Khayyat Ihab F. Ilyas Alekh Jindal Samuel Madden Mourad Ouzzani Paolo Papotti Jorge-Arnulfo Quian\u00e9-Ruiz Nan Tang and Si Yin. 2015. BigDansing: A System for Big Data Cleansing. In SIGMOD. 1215--1230.","DOI":"10.1145\/2723372.2747646"},{"key":"e_1_3_2_1_18_1","volume-title":"Adam: A Method for Stochastic Optimization. In International Conference on Learning Representations (ICLR).","author":"Kingma Diederik","year":"2015","unstructured":"Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In International Conference on Learning Representations (ICLR)."},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.14778\/3401960.3401966"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDE55515.2023.00034"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"crossref","unstructured":"Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Functional Dependency Discovery. In SIGMOD.","DOI":"10.1145\/2882903.2915203"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.14778\/3368289.3368293"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.14778\/3574245.3574254"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.14778\/3137628.3137631"},{"key":"e_1_3_2_1_25_1","volume-title":"Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.","author":"Silver David","year":"2016","unstructured":"David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural networks and tree search. nature, Vol. 529, 7587 (2016), 484--489."},{"key":"e_1_3_2_1_26_1","volume-title":"Science","volume":"362","author":"Silver David","year":"2018","unstructured":"David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. 2018. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, Vol. 362, 6419 (2018), 1140--1144."},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"crossref","unstructured":"David Silver Julian Schrittwieser Karen Simonyan Ioannis Antonoglou Aja Huang Arthur Guez Thomas Hubert Lucas Baker Matthew Lai Adrian Bolton et al. 2017. Mastering the game of go without human knowledge. nature Vol. 550 7676 (2017) 354--359.","DOI":"10.1038\/nature24270"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"crossref","unstructured":"Shaoxu Song Han Zhu and Jianmin Wang. 2016. Constraint-Variance Tolerant Data Repairing. In SIGMOD.","DOI":"10.1145\/2882903.2882955"},{"volume-title":"Reinforcement learning: An introduction","author":"Sutton Richard S","key":"e_1_3_2_1_29_1","unstructured":"Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.14778\/2350229.2350241"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.14778\/3565816.3565828"}],"event":{"name":"CIKM '24: The 33rd ACM International Conference on Information and Knowledge Management","sponsor":["SIGIR ACM Special Interest Group on Information Retrieval"],"location":"Boise ID USA","acronym":"CIKM '24"},"container-title":["Proceedings of the 33rd ACM International Conference on Information and Knowledge Management"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3627673.3679714","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,21]],"date-time":"2024-10-21T15:08:45Z","timestamp":1729523325000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3627673.3679714"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,21]]},"references-count":31,"alternative-id":["10.1145\/3627673.3679714","10.1145\/3627673"],"URL":"https:\/\/doi.org\/10.1145\/3627673.3679714","relation":{},"subject":[],"published":{"date-parts":[[2024,10,21]]},"assertion":[{"value":"2024-10-21","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}