{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:01:34Z","timestamp":1740103294048,"version":"3.37.3"},"publisher-location":"New York, NY, USA","reference-count":42,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,10,21]]},"DOI":"10.1145\/3627673.3679698","type":"proceedings-article","created":{"date-parts":[[2024,10,20]],"date-time":"2024-10-20T19:34:21Z","timestamp":1729452861000},"page":"1226-1234","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":0,"title":["Integrating Structure and Text for Enhancing Hyper-relational Knowledge Graph Representation via Structure Soft Prompt Tuning"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0009-0003-6380-6714","authenticated-orcid":false,"given":"Lijie","family":"Li","sequence":"first","affiliation":[{"name":"Harbin Engineering University, Harbin, Heilongjiang, China"}]},{"ORCID":"https:\/\/orcid.org\/0009-0003-9604-5595","authenticated-orcid":false,"given":"Hui","family":"Wang","sequence":"additional","affiliation":[{"name":"Harbin Engineering University, Harbin, Heilongjiang, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1315-5429","authenticated-orcid":false,"given":"Jiahang","family":"Li","sequence":"additional","affiliation":[{"name":"Harbin Engineering University, Harbin, Heilongjiang, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2808-3819","authenticated-orcid":false,"given":"Xiaodi","family":"Xu","sequence":"additional","affiliation":[{"name":"Harbin Engineering University, Harbin, Heilongjiang, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0223-8181","authenticated-orcid":false,"given":"Ye","family":"Wang","sequence":"additional","affiliation":[{"name":"Harbin Engineering University, Harbin, Heilongjiang, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0408-9447","authenticated-orcid":false,"given":"Tao","family":"Ren","sequence":"additional","affiliation":[{"name":"State Library of Intelligent Game, Institute of Software Chinese Academy of Sciences, Beijing, China"}]}],"member":"320","published-online":{"date-parts":[[2024,10,21]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/1376616.1376746"},{"key":"e_1_3_2_1_2_1","volume-title":"Translating embeddings for modeling multi-relational data. Advances in neural information processing systems","author":"Bordes Antoine","year":"2013","unstructured":"Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, Vol. 26 (2013)."},{"key":"e_1_3_2_1_3_1","volume-title":"KBGAN: Adversarial Learning for Knowledge Graph Embeddings. CoRR","author":"Cai Liwei","year":"2017","unstructured":"Liwei Cai and William Yang Wang. 2017. KBGAN: Adversarial Learning for Knowledge Graph Embeddings. CoRR, Vol. abs\/1711.04071 (2017). showeprint[arXiv]1711.04071 http:\/\/arxiv.org\/abs\/1711.04071"},{"key":"e_1_3_2_1_4_1","volume-title":"Dipping plms sauce: Bridging structure and text for effective knowledge graph completion via conditional soft prompting. arXiv preprint arXiv:2307.01709","author":"Chen Chen","year":"2023","unstructured":"Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-Yan Lam. 2023. Dipping plms sauce: Bridging structure and text for effective knowledge graph completion via conditional soft prompting. arXiv preprint arXiv:2307.01709 (2023)."},{"key":"e_1_3_2_1_5_1","volume-title":"International conference on machine learning. PMLR, 1597--1607","author":"Chen Ting","year":"2020","unstructured":"Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR, 1597--1607."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2021.3113329"},{"key":"e_1_3_2_1_7_1","volume-title":"KBQA: Learning question answering over QA corpora and knowledge bases. arXiv","author":"Cui W","year":"2019","unstructured":"W Cui, Y Xiao, H Wang, Y Song, SW Hwang, and W Wang. [n.,d.]. KBQA: Learning question answering over QA corpora and knowledge bases. arXiv 2019. arXiv preprint arXiv:1903.02419 ( [n.,d.])."},{"key":"e_1_3_2_1_8_1","volume-title":"ISWC2021","volume":"2980","author":"Delva Thomas","year":"2021","unstructured":"Thomas Delva, Juli\u00e1n Arenas-Guerrero, Ana Iglesias-Molina, Oscar Corcho, David Chaves-Fraga, and Anastasia Dimou. 2021. RML-star: A declarative mapping language for RDF-star generation. In ISWC2021, the International Semantic Web Conference, Vol. 2980. CEUR."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11573"},{"key":"e_1_3_2_1_10_1","volume-title":"Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805","author":"Devlin Jacob","year":"2018","unstructured":"Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)."},{"key":"e_1_3_2_1_11_1","volume-title":"Message Passing for Hyper-Relational Knowledge Graphs. CoRR","author":"Galkin Mikhail","year":"2020","unstructured":"Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. 2020. Message Passing for Hyper-Relational Knowledge Graphs. CoRR, Vol. abs\/2009.10847 (2020). showeprint[arXiv]2009.10847 https:\/\/arxiv.org\/abs\/2009.10847"},{"key":"e_1_3_2_1_12_1","volume-title":"Generative adversarial nets. Advances in neural information processing systems","author":"Goodfellow Ian","year":"2014","unstructured":"Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. Advances in neural information processing systems, Vol. 27 (2014)."},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.acl-main.546"},{"key":"e_1_3_2_1_14_1","first-page":"672","article-title":"Link prediction on n-ary relational data based on relatedness evaluation","volume":"35","author":"Guan Saiping","year":"2021","unstructured":"Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. 2021. Link prediction on n-ary relational data based on relatedness evaluation. IEEE Transactions on Knowledge and Data Engineering, Vol. 35, 1 (2021), 672--685.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/3308558.3313414"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"crossref","unstructured":"Saiping Guan Xiaolong Jin Yuanzhuo Wang and Xueqi Cheng. 2019. Link prediction on n-ary relational data. In The world wide web conference. 583--593.","DOI":"10.1145\/3308558.3313414"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D19-5709"},{"key":"e_1_3_2_1_18_1","volume-title":"Comprehensive Analysis of Negative Sampling in Knowledge Graph Representation Learning. In International Conference on Machine Learning, ICML 2022","volume":"10675","author":"Kamigaito Hidetaka","year":"2022","unstructured":"Hidetaka Kamigaito and Katsuhiko Hayashi. 2022. Comprehensive Analysis of Negative Sampling in Knowledge Graph Representation Learning. In International Conference on Machine Learning, ICML 2022, 17--23 July 2022, Baltimore, Maryland, USA (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesv\u00e1ri, Gang Niu, and Sivan Sabato (Eds.). PMLR, 10661--10675. https:\/\/proceedings.mlr.press\/v162\/kamigaito22a.html"},{"key":"e_1_3_2_1_19_1","volume-title":"The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691","author":"Lester Brian","year":"2021","unstructured":"Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)."},{"key":"e_1_3_2_1_20_1","volume-title":"Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190","author":"Li Xiang Lisa","year":"2021","unstructured":"Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021)."},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/3442381.3449874"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2023.acl-long.450"},{"key":"e_1_3_2_1_23_1","unstructured":"Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever et al. 2018. Improving language understanding by generative pre-training. (2018)."},{"key":"e_1_3_2_1_24_1","first-page":"1","article-title":"Exploring the limits of transfer learning with a unified text-to-text transformer","volume":"21","author":"Raffel Colin","year":"2020","unstructured":"Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research, Vol. 21, 140 (2020), 1--67.","journal-title":"Journal of machine learning research"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/3366423.3380257"},{"key":"e_1_3_2_1_26_1","volume-title":"Wikidata: A free collaborative knowledge graph.","author":"Seminar Knowledge Graphs","year":"2019","unstructured":"Knowledge Graphs Seminar, Nahor Gebretensae, and Heiko Paulheim. 2019. Wikidata: A free collaborative knowledge graph. (2019)."},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/1242572.1242667"},{"key":"e_1_3_2_1_28_1","volume-title":"Composition-based multi-relational graph convolutional networks. arXiv preprint arXiv:1911.03082","author":"Vashishth Shikhar","year":"2019","unstructured":"Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019. Composition-based multi-relational graph convolutional networks. arXiv preprint arXiv:1911.03082 (2019)."},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11536"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-44693-1_9"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2022\/318"},{"key":"e_1_3_2_1_32_1","volume-title":"Promda: Prompt-based data augmentation for low-resource nlu tasks. arXiv preprint arXiv:2202.12499","author":"Wang Yufei","year":"2022","unstructured":"Yufei Wang, Can Xu, Qingfeng Sun, Huang Hu, Chongyang Tao, Xiubo Geng, and Daxin Jiang. 2022. Promda: Prompt-based data augmentation for low-resource nlu tasks. arXiv preprint arXiv:2202.12499 (2022)."},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v28i1.8870"},{"key":"e_1_3_2_1_34_1","volume-title":"On the representation and embedding of knowledge bases beyond binary relations. arXiv preprint arXiv:1604.08642","author":"Wen Jianfeng","year":"2016","unstructured":"Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. 2016. On the representation and embedding of knowledge bases beyond binary relations. arXiv preprint arXiv:1604.08642 (2016)."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/2566486.2568032"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2023.acl-long.743"},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.2206.00212"},{"key":"e_1_3_2_1_38_1","volume-title":"KG-BERT: BERT for Knowledge Graph Completion. CoRR","author":"Yao Liang","year":"2019","unstructured":"Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-BERT: BERT for Knowledge Graph Completion. CoRR, Vol. abs\/1909.03193 (2019). showeprint[arXiv]1909.03193 http:\/\/arxiv.org\/abs\/1909.03193"},{"key":"e_1_3_2_1_39_1","volume-title":"Improving Hyper-Relational Knowledge Graph Completion. CoRR","author":"Yu Donghan","year":"2021","unstructured":"Donghan Yu and Yiming Yang. 2021. Improving Hyper-Relational Knowledge Graph Completion. CoRR, Vol. abs\/2104.08167 (2021). showeprint[arXiv]2104.08167 https:\/\/arxiv.org\/abs\/2104.08167"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939673"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1145\/3178876.3186017"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.findings-emnlp.25"}],"event":{"name":"CIKM '24: The 33rd ACM International Conference on Information and Knowledge Management","sponsor":["SIGIR ACM Special Interest Group on Information Retrieval"],"location":"Boise ID USA","acronym":"CIKM '24"},"container-title":["Proceedings of the 33rd ACM International Conference on Information and Knowledge Management"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3627673.3679698","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,21]],"date-time":"2024-10-21T15:28:01Z","timestamp":1729524481000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3627673.3679698"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,21]]},"references-count":42,"alternative-id":["10.1145\/3627673.3679698","10.1145\/3627673"],"URL":"https:\/\/doi.org\/10.1145\/3627673.3679698","relation":{},"subject":[],"published":{"date-parts":[[2024,10,21]]},"assertion":[{"value":"2024-10-21","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}