{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,4]],"date-time":"2025-05-04T00:40:06Z","timestamp":1746319206185,"version":"3.40.4"},"publisher-location":"New York, NY, USA","reference-count":52,"publisher":"ACM","funder":[{"name":"FAPESP","award":["2022\/07016-9"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,6,22]]},"DOI":"10.1145\/3627043.3659558","type":"proceedings-article","created":{"date-parts":[[2024,6,22]],"date-time":"2024-06-22T10:24:16Z","timestamp":1719051856000},"page":"78-88","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["User Perception of Fairness-Calibrated Recommendations"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9080-0030","authenticated-orcid":false,"given":"Gabrielle","family":"Alves","sequence":"first","affiliation":[{"name":"Universidade de S\u00e3o Paulo, Brazil"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4698-8507","authenticated-orcid":false,"given":"Dietmar","family":"Jannach","sequence":"additional","affiliation":[{"name":"University of Klagenfurt, Austria"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9272-4107","authenticated-orcid":false,"given":"Rodrigo","family":"Ferrari De Souza","sequence":"additional","affiliation":[{"name":"Universidade de S\u00e3o Paulo, Brazil"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3215-6918","authenticated-orcid":false,"given":"Marcelo Garcia","family":"Manzato","sequence":"additional","affiliation":[{"name":"Universidade de S\u00e3o Paulo, Brazil"}]}],"member":"320","published-online":{"date-parts":[[2024,6,22]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"The Impact of Popularity Bias on Fairness and Calibration in Recommendation. ArXiv abs\/1910.05755","author":"Abdollahpouri Himan","year":"2019","unstructured":"Himan Abdollahpouri, Masoud Mansoury, R. Burke, and Bamshad Mobasher. 2019. The Impact of Popularity Bias on Fairness and Calibration in Recommendation. ArXiv abs\/1910.05755 (2019)."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/3383313.3418487"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/3450613.3456821"},{"key":"e_1_3_2_1_4_1","volume-title":"Digitally Nudging Users to Explore Off-Profile Recommendations: Here Be Dragons. User Modeling and User-Adapted Interaction online first","author":"Alves Gabrielle","year":"2023","unstructured":"Gabrielle Alves, Dietmar Jannach, Rodrigo Ferrari, Daniela Damian, and Marcelo\u00a0Garcia Manzato. 2023. Digitally Nudging Users to Explore Off-Profile Recommendations: Here Be Dragons. User Modeling and User-Adapted Interaction online first (2023)."},{"key":"e_1_3_2_1_5_1","volume-title":"Top-N Recommendation Algorithms: A Quest for the State-of-the-Art. In 30th ACM Conference on User Modeling, Adaptation and Personalization (UMAP","author":"Anelli Vito\u00a0Walter","year":"2022","unstructured":"Vito\u00a0Walter Anelli, Alejandro Bellogin, Tommaso\u00a0Di Noia, Dietmar Jannach, and Claudio Pomo. 2022. Top-N Recommendation Algorithms: A Quest for the State-of-the-Art. In 30th ACM Conference on User Modeling, Adaptation and Personalization (UMAP 2022)."},{"volume-title":"Ethics of Data and Analytics","author":"Angwin Julia","key":"e_1_3_2_1_6_1","unstructured":"Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine bias. In Ethics of Data and Analytics. Auerbach Publications, 254\u2013264."},{"key":"e_1_3_2_1_7_1","unstructured":"Solon Barocas Moritz Hardt and Arvind Narayanan. 2019. Fairness and Machine Learning. fairmlbook.org. http:\/\/www.fairmlbook.org."},{"key":"e_1_3_2_1_8_1","unstructured":"Jiawei Chen Hande Dong Xiang Wang Fuli Feng Meng Wang and Xiangnan He\u2020. 2022. Bias and Debias in Recommender System: A Survey and Future Directions. ACM Trans. Inf. Syst. (2022)."},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1080\/0144929X.2012.719034"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2021.115112"},{"key":"e_1_3_2_1_11_1","volume-title":"Fairness in Recommender Systems: Research Landscape and Future Directions. User Modeling and User-Adapted Interaction online first","author":"Deldjoo Yashar","year":"2023","unstructured":"Yashar Deldjoo, Dietmar Jannach, Alejandro Bellogin, Alessandro Difonzo, and Dario Zanzonelli. 2023. Fairness in Recommender Systems: Research Landscape and Future Directions. User Modeling and User-Adapted Interaction online first (2023)."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/3565472.3592960"},{"key":"e_1_3_2_1_13_1","volume-title":"How to select, calculate, and interpret effect sizes.Journal of pediatric psychology 34 9","author":"Durlak A.","year":"2009","unstructured":"Joseph\u00a0A. Durlak. 2009. How to select, calculate, and interpret effect sizes.Journal of pediatric psychology 34 9 (2009), 917\u201328."},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1561\/1500000079"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"crossref","unstructured":"Michael\u00a0D. Ekstrand Anubrata Das Robin Burke and Fernando Diaz. 2022. Fairness in Recommender Systems. In Recommender Systems Handbook Francesco Ricci Lior Rokach and Bracha Shapira (Eds.). 679\u2013707.","DOI":"10.1007\/978-1-0716-2197-4_18"},{"key":"e_1_3_2_1_16_1","volume-title":"Beyond Algorithmic Fairness in Recommender Systems. In Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization","author":"Elahi Mehdi","year":"2021","unstructured":"Mehdi Elahi, Himan Abdollahpouri, Masoud Mansoury, and Helma Torkamaan. 2021. Beyond Algorithmic Fairness in Recommender Systems. In Adjunct Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization (Utrecht, Netherlands) (UMAP \u201921). 41\u201346."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/s43681-021-00107-7"},{"key":"e_1_3_2_1_18_1","volume-title":"The qualitative content analysis process.Journal of advanced nursing 62 1","author":"Elo Satu","year":"2008","unstructured":"Satu Elo and Helvi\u00a0Aulikki Kyng\u00e4s. 2008. The qualitative content analysis process.Journal of advanced nursing 62 1 (2008), 107\u201315."},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1287\/mnsc.1080.0974"},{"key":"e_1_3_2_1_20_1","article-title":"The Netflix Recommender System: Algorithms, Business Value, and Innovation","volume":"6","author":"Gomez-Uribe A.","year":"2015","unstructured":"Carlos\u00a0A. Gomez-Uribe and Neil Hunt. 2015. The Netflix Recommender System: Algorithms, Business Value, and Innovation. Transactions on Management Information Systems 6, 4 (2015), 13:1\u201313:19.","journal-title":"Transactions on Management Information Systems"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"crossref","unstructured":"Xiangnan He Lizi Liao Hanwang Zhang Liqiang Nie Xia Hu and Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW \u201917. 173\u2013182.","DOI":"10.1145\/3038912.3052569"},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.3102\/10769986006002107"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1177\/1049732305276687"},{"key":"e_1_3_2_1_24_1","volume-title":"Perception of Fairness in Group Music Recommender Systems. In 26th International Conference on Intelligent User Interfaces. 302\u2013306","author":"Htun Nyi\u00a0Nyi","year":"2021","unstructured":"Nyi\u00a0Nyi Htun, Elisa Lecluse, and Katrien Verbert. 2021. Perception of Fairness in Group Music Recommender Systems. In 26th International Conference on Intelligent User Interfaces. 302\u2013306."},{"key":"e_1_3_2_1_25_1","unstructured":"Dietmar Jannach and Markus Zanker. 2021. Impact and Value of Recommender Systems. In Recommender Systems Handbook Francesco Ricci Bracha Shapira and Lior Rokach (Eds.). Springer US."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/3472307.3484164"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.03.055"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1145\/3298689.3347045"},{"key":"e_1_3_2_1_29_1","volume-title":"Evaluating The Effects of Calibrated Popularity Bias Mitigation: A Field Study. In 17th ACM Conference on Recommender Systems (Late Breaking Results).","author":"Klimashevskaia Anastasiia","year":"2023","unstructured":"Anastasiia Klimashevskaia, Mehdi Elahi, Dietmar Jannach, Lars Skj\u00e6rven, Astrid Tessem, and Christoph Trattner. 2023. Evaluating The Effects of Calibrated Popularity Bias Mitigation: A Field Study. In 17th ACM Conference on Recommender Systems (Late Breaking Results)."},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"crossref","unstructured":"Anastasiia Klimashevskaia Mehdi Elahi Dietmar Jannach Christoph Trattner and Lars Skj\u00e6rven. 2022. Mitigating Popularity Bias in\u00a0Recommendation: Potential and\u00a0Limits of\u00a0Calibration Approaches. In Advances in Bias and Fairness in Information Retrieval Ludovico Boratto Stefano Faralli Mirko Marras and Giovanni Stilo (Eds.). 82\u201390.","DOI":"10.1007\/978-3-031-09316-6_8"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2014.07.024"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1145\/3539618.3591964"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"crossref","unstructured":"Dawen Liang Rahul\u00a0G Krishnan Matthew\u00a0D Hoffman and Tony Jebara. 2018. Variational Autoencoders for Collaborative Filtering. In WWW \u201918. 689\u2013698.","DOI":"10.1145\/3178876.3186150"},{"key":"e_1_3_2_1_34_1","volume-title":"Article 115","author":"Mehrabi Ninareh","year":"2021","unstructured":"Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv. 54, 6, Article 115 (2021)."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/3604915.3608805"},{"key":"e_1_3_2_1_36_1","volume-title":"Proc. Conf. Fairness Accountability Transp.","author":"Narayanan Arvind","year":"2018","unstructured":"Arvind Narayanan. 2018. Translation tutorial: 21 fairness definitions and their politics. In Proc. Conf. Fairness Accountability Transp., New York, USA, Vol.\u00a01170. 3."},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2011.134"},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"crossref","unstructured":"Jinoh Oh Sun Park Hwanjo Yu Min Song and Seung-Taek Park. 2011. Novel Recommendation Based on Personal Popularity Tendency. In ICDM \u201911. 507\u2013516.","DOI":"10.1109\/ICDM.2011.110"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1145\/3583780.3615010"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/2043932.2043962"},{"key":"e_1_3_2_1_41_1","unstructured":"Robert Rosenthal. 1984. Meta-analytic procedures for social research."},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/3038912.3052612"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1145\/3450613.3456835"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/2043932.2043957"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1145\/3240323.3240372"},{"key":"e_1_3_2_1_46_1","volume-title":"Fairness in Group Recommendations in the Health Domain. In 33rd IEEE International Conference on Data Engineering, ICDE","author":"Stratigi Maria","year":"2017","unstructured":"Maria Stratigi, Haridimos Kondylakis, and Kostas Stefanidis. 2017. Fairness in Group Recommendations in the Health Domain. In 33rd IEEE International Conference on Data Engineering, ICDE 2017. 1481\u20131488."},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"crossref","unstructured":"Tom S\u00fchr Sophie Hilgard and Himabindu Lakkaraju. 2021. Does Fair Ranking Improve Minority Outcomes? Understanding the Interplay of Human and Algorithmic Biases in Online Hiring. 989\u2013999.","DOI":"10.1145\/3461702.3462602"},{"key":"e_1_3_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/3313831.3376813"},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1145\/3547333"},{"key":"e_1_3_2_1_50_1","first-page":"1","article-title":"A Multi-Objective Optimization Framework for Multi-Stakeholder Fairness-Aware Recommendation","volume":"41","author":"Wu Haolun","year":"2021","unstructured":"Haolun Wu, Chen Ma, Bhaskar Mitra, Fernando Diaz, and Xue Liu. 2021. A Multi-Objective Optimization Framework for Multi-Stakeholder Fairness-Aware Recommendation. ACM Transactions on Information Systems 41 (2021), 1 \u2013 29.","journal-title":"ACM Transactions on Information Systems"},{"key":"e_1_3_2_1_51_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2017.10.040"},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1145\/3397271.3401177"}],"event":{"name":"UMAP '24: 32nd ACM Conference on User Modeling, Adaptation and Personalization","sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web","SIGCHI ACM Special Interest Group on Computer-Human Interaction"],"location":"Cagliari Italy","acronym":"UMAP '24"},"container-title":["Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3627043.3659558","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,5,4]],"date-time":"2025-05-04T00:23:19Z","timestamp":1746318199000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3627043.3659558"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6,22]]},"references-count":52,"alternative-id":["10.1145\/3627043.3659558","10.1145\/3627043"],"URL":"https:\/\/doi.org\/10.1145\/3627043.3659558","relation":{},"subject":[],"published":{"date-parts":[[2024,6,22]]},"assertion":[{"value":"2024-06-22","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}