{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T17:47:45Z","timestamp":1725558465503},"reference-count":152,"publisher":"Association for Computing Machinery (ACM)","issue":"4","funder":[{"DOI":"10.13039\/501100000266","name":"Engineering and Physical Sciences Research Council","doi-asserted-by":"crossref","award":["EP\/W523835\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Comput. Surv."],"published-print":{"date-parts":[[2024,4,30]]},"abstract":"\n Recent years have seen remarkable progress in deep learning powered visual content creation. This includes deep generative 3D-aware image synthesis, which produces high-fidelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The field of computer vision has been recently captivated by the task of deep generative 3D-aware image synthesis, with hundreds of papers appearing in top-tier journals and conferences over the past few years (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at\n https:\/\/weihaox.github.io\/3D-aware-Gen<\/jats:ext-link>\n .\n <\/jats:p>","DOI":"10.1145\/3626193","type":"journal-article","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T08:04:43Z","timestamp":1696061083000},"page":"1-34","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["A Survey on Deep Generative 3D-aware Image Synthesis"],"prefix":"10.1145","volume":"56","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0087-3525","authenticated-orcid":false,"given":"Weihao","family":"Xia","sequence":"first","affiliation":[{"name":"University College London, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1174-610X","authenticated-orcid":false,"given":"Jing-Hao","family":"Xue","sequence":"additional","affiliation":[{"name":"University College London, UK"}]}],"member":"320","published-online":{"date-parts":[[2023,11,9]]},"reference":[{"key":"e_1_3_1_2_2","doi-asserted-by":"publisher","DOI":"10.1145\/3447648"},{"key":"e_1_3_1_3_2","first-page":"85","volume-title":"ACCV","author":"Alhaija Hassan Abu","year":"2018","unstructured":"Hassan Abu Alhaija, Siva Karthik Mustikovela, Andreas Geiger, and Carsten Rother. 2018. Geometric image synthesis. In ACCV. 85\u2013100."},{"key":"e_1_3_1_4_2","first-page":"12608","volume-title":"CVPR","author":"Anciukevi\u010dius Titas","year":"2023","unstructured":"Titas Anciukevi\u010dius, Zexiang Xu, Matthew Fisher, Paul Henderson, Hakan Bilen, Niloy J. Mitra, and Paul Guerrero. 2023. RenderDiffusion: Image diffusion for 3D reconstruction, inpainting and generation. In CVPR. 12608\u201312618."},{"key":"e_1_3_1_5_2","first-page":"5855","volume-title":"ICCV","author":"Barron Jonathan T.","year":"2021","unstructured":"Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A multiscale representation for anti-aliasing neural radiance fields. In ICCV. 5855\u20135864."},{"key":"e_1_3_1_6_2","first-page":"19900","article-title":"Generative neural articulated radiance fields","volume":"35","author":"Bergman Alexander","year":"2022","unstructured":"Alexander Bergman, Petr Kellnhofer, Wang Yifan, Eric Chan, David Lindell, and Gordon Wetzstein. 2022. Generative neural articulated radiance fields. NeurIPS 35 (2022), 19900\u201319916.","journal-title":"NeurIPS"},{"key":"e_1_3_1_7_2","article-title":"Demystifying MMD GANs","author":"Bi\u0144kowski Miko\u0142aj","year":"2018","unstructured":"Miko\u0142aj Bi\u0144kowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. 2018. Demystifying MMD GANs. arXiv preprint arXiv:1801.01401 (2018).","journal-title":"arXiv preprint arXiv:1801.01401"},{"key":"e_1_3_1_8_2","first-page":"187","volume-title":"SIGGRAPH","author":"Blanz Volker","year":"1999","unstructured":"Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D faces. In SIGGRAPH. 187\u2013194."},{"key":"e_1_3_1_9_2","article-title":"Optimizing the latent space of generative networks","author":"Bojanowski Piotr","year":"2017","unstructured":"Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. 2017. Optimizing the latent space of generative networks. arXiv preprint arXiv:1707.05776 (2017).","journal-title":"arXiv preprint arXiv:1707.05776"},{"key":"e_1_3_1_10_2","article-title":"The stable artist: Steering semantics in diffusion latent space","author":"Brack Manuel","year":"2022","unstructured":"Manuel Brack, Patrick Schramowski, Felix Friedrich, Dominik Hintersdorf, and Kristian Kersting. 2022. The stable artist: Steering semantics in diffusion latent space. arXiv preprint arXiv:2212.06013 (2022).","journal-title":"arXiv preprint arXiv:2212.06013"},{"key":"e_1_3_1_11_2","first-page":"13870","volume-title":"ICCV","author":"B\u00fchler Marcel C.","year":"2021","unstructured":"Marcel C. B\u00fchler, Abhimitra Meka, Gengyan Li, Thabo Beeler, and Otmar Hilliges. 2021. VariTex: Variational neural face textures. In ICCV. 13870\u201313879."},{"key":"e_1_3_1_12_2","first-page":"3981","volume-title":"CVPR","author":"Cai Shengqu","year":"2022","unstructured":"Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc Van Gool. 2022. Pix2NeRF: Unsupervised conditional pi-GAN for single image to neural radiance fields translation. In CVPR. 3981\u20133990."},{"key":"e_1_3_1_13_2","first-page":"16102","volume-title":"CVPR","author":"Chan Eric R.","year":"2022","unstructured":"Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein. 2022. Efficient geometry-aware 3D generative adversarial networks. In CVPR. 16102\u201316112."},{"key":"e_1_3_1_14_2","first-page":"5799","volume-title":"CVPR","author":"Chan Eric R.","year":"2021","unstructured":"Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. 2021. pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis. In CVPR. 5799\u20135809."},{"key":"e_1_3_1_15_2","article-title":"Generative novel view synthesis with 3D-aware diffusion models","author":"Chan Eric R.","year":"2023","unstructured":"Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexander W. Bergman, Jeong Joon Park, Axel Levy, Miika Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein. 2023. Generative novel view synthesis with 3D-aware diffusion models. arXiv preprint arXiv:2304.02602 (2023).","journal-title":"arXiv preprint arXiv:2304.02602"},{"key":"e_1_3_1_16_2","article-title":"ShapeNet: An information-rich 3D model repository","author":"Chang Angel X.","year":"2015","unstructured":"Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, and Hao Su. 2015. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015).","journal-title":"arXiv preprint arXiv:1512.03012"},{"key":"e_1_3_1_17_2","first-page":"127","volume-title":"CGF","author":"Chen Xuelin","year":"2021","unstructured":"Xuelin Chen, Daniel Cohen-Or, Baoquan Chen, and Niloy J. Mitra. 2021. Towards a neural graphics pipeline for controllable image generation. In CGF, Vol. 40. 127\u2013140."},{"key":"e_1_3_1_18_2","first-page":"730","volume-title":"ECCV","author":"Chen Yuedong","year":"2022","unstructured":"Yuedong Chen, Qianyi Wu, Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. 2022. Sem2NeRF: Converting single-view semantic masks to neural radiance fields. In ECCV. 730\u2013748."},{"key":"e_1_3_1_19_2","first-page":"8185","volume-title":"CVPR","author":"Choi Yunjey","year":"2020","unstructured":"Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. 2020. StarGAN v2: Diverse image synthesis for multiple domains. In CVPR. 8185\u20138194."},{"key":"e_1_3_1_20_2","first-page":"5828","volume-title":"CVPR","author":"Dai Angela","year":"2017","unstructured":"Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nie\u00dfner. 2017. ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In CVPR. 5828\u20135839."},{"key":"e_1_3_1_21_2","first-page":"248","volume-title":"CVPR","author":"Deng Jia","year":"2009","unstructured":"Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In CVPR. 248\u2013255."},{"key":"e_1_3_1_22_2","first-page":"4690","volume-title":"CVPR","author":"Deng Jiankang","year":"2019","unstructured":"Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. ArcFace: Additive angular margin loss for deep face recognition. In CVPR. 4690\u20134699."},{"key":"e_1_3_1_23_2","first-page":"5154","volume-title":"CVPR","author":"Deng Yu","year":"2020","unstructured":"Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin Tong. 2020. Disentangled and controllable face image generation via 3D imitative-contrastive learning. In CVPR. 5154\u20135163."},{"key":"e_1_3_1_24_2","first-page":"10663","volume-title":"CVPR","author":"Deng Yu","year":"2022","unstructured":"Yu Deng, Jiaolong Yang, Jianfeng Xiang, and Xin Tong. 2022. GRAM: Generative radiance manifolds for 3D-aware image generation. In CVPR. 10663\u201310673."},{"key":"e_1_3_1_25_2","first-page":"1","volume-title":"CoRL","author":"Dosovitskiy Alexey","year":"2017","unstructured":"Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. 2017. CARLA: An open urban driving simulator. In CoRL. 1\u201316."},{"key":"e_1_3_1_26_2","first-page":"395","volume-title":"Computer Graphics Forum","author":"Endo Yuki","year":"2022","unstructured":"Yuki Endo. 2022. User-controllable latent transformer for StyleGAN image layout editing. In Computer Graphics Forum, Vol. 41. 395\u2013406."},{"key":"e_1_3_1_27_2","first-page":"616","volume-title":"ECCV","author":"Epstein Dave","year":"2022","unstructured":"Dave Epstein, Taesung Park, Richard Zhang, Eli Shechtman, and Alexei A. Efros. 2022. BlobGAN: Spatially disentangled scene representations. In ECCV. 616\u2013635."},{"key":"e_1_3_1_28_2","first-page":"9841","volume-title":"NeurIPS","author":"H\u00e4rk\u00f6nen Erik","year":"2020","unstructured":"Erik H\u00e4rk\u00f6nen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. 2020. GANSpace: Discovering interpretable GAN controls. In NeurIPS, Vol. 33. 9841\u20139850."},{"key":"e_1_3_1_29_2","first-page":"1","volume-title":"ECCV","author":"Fu Jianglin","year":"2022","unstructured":"Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen Change Loy, Wayne Wu, and Ziwei Liu. 2022. StyleGAN-human: A data-centric odyssey of human generation. In ECCV. Springer, 1\u201319."},{"key":"e_1_3_1_30_2","first-page":"402","volume-title":"3DV","author":"Gadelha Matheus","year":"2017","unstructured":"Matheus Gadelha, Subhransu Maji, and Rui Wang. 2017. 3D shape induction from 2D views of multiple objects. In 3DV. 402\u2013411."},{"key":"e_1_3_1_31_2","first-page":"8649","volume-title":"CVPR","author":"Gafni Guy","year":"2021","unstructured":"Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias Nie\u00dfner. 2021. Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In CVPR. 8649\u20138658."},{"key":"e_1_3_1_32_2","first-page":"14346","volume-title":"ICCV","author":"Garbin Stephan J.","year":"2021","unstructured":"Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. 2021. FastNeRF: High-fidelity neural rendering at 200FPS. In ICCV. 14346\u201314355."},{"key":"e_1_3_1_33_2","doi-asserted-by":"publisher","DOI":"10.1145\/3422622"},{"key":"e_1_3_1_34_2","volume-title":"ICLR","author":"Gu Jiatao","year":"2022","unstructured":"Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. 2022. StyleNeRF: A style-based 3D aware generator for high-resolution image synthesis. In ICLR."},{"key":"e_1_3_1_35_2","article-title":"Discovering interpretable directions in the semantic latent space of diffusion models","author":"Haas Ren\u00e9","year":"2023","unstructured":"Ren\u00e9 Haas, Inbar Huberman-Spiegelglas, Rotem Mulayoff, and Tomer Michaeli. 2023. Discovering interpretable directions in the semantic latent space of diffusion models. arXiv preprint arXiv:2303.11073 (2023).","journal-title":"arXiv preprint arXiv:2303.11073"},{"key":"e_1_3_1_36_2","first-page":"9983","volume-title":"ICCV","author":"Henzler Philipp","year":"2019","unstructured":"Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. 2019. Escaping Plato\u2019s cave: 3D shape from adversarial rendering. In ICCV. 9983\u20139992."},{"key":"e_1_3_1_37_2","first-page":"6626","volume-title":"NeurIPS","author":"Heusel Martin","year":"2017","unstructured":"Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In NeurIPS, Vol. 30. 6626\u20136637."},{"key":"e_1_3_1_38_2","first-page":"6840","volume-title":"NeurIPS","author":"Ho Jonathan","year":"2020","unstructured":"Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. In NeurIPS, Vol. 33. 6840\u20136851."},{"key":"e_1_3_1_39_2","volume-title":"ICLR","author":"Hong Fangzhou","year":"2023","unstructured":"Fangzhou Hong, Zhaoxi Chen, Yushi Lan, Liang Pan, and Ziwei Liu. 2023. EVA3D: Compositional 3D human generation from 2D image collections. In ICLR."},{"key":"e_1_3_1_40_2","first-page":"20342","volume-title":"CVPR","author":"Hong Yang","year":"2022","unstructured":"Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juyong Zhang. 2022. HeadNeRF: A real-time NeRF-based parametric head model. In CVPR. 20342\u201320352."},{"key":"e_1_3_1_41_2","first-page":"12902","volume-title":"CVPR","author":"Hu Tao","year":"2022","unstructured":"Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia. 2022. EfficientNeRF: Efficient neural radiance fields. In CVPR. 12902\u201312911."},{"key":"e_1_3_1_42_2","volume-title":"ICLR","author":"Jahanian Ali","year":"2020","unstructured":"Ali Jahanian, Lucy Chai, and Phillip Isola. 2020. On the \u201csteerability\u201d of generative adversarial networks. In ICLR."},{"key":"e_1_3_1_43_2","first-page":"2901","volume-title":"CVPR","author":"Johnson Justin","year":"2017","unstructured":"Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross Girshick. 2017. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In CVPR. 2901\u20132910."},{"key":"e_1_3_1_44_2","doi-asserted-by":"publisher","DOI":"10.1145\/964965.808594"},{"key":"e_1_3_1_45_2","first-page":"18423","volume-title":"CVPR","author":"Karnewar Animesh","year":"2023","unstructured":"Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy J. Mitra. 2023. HoloDiffusion: Training a 3D diffusion model using 2D images. In CVPR. 18423\u201318433."},{"key":"e_1_3_1_46_2","volume-title":"ICLR","author":"Karras Tero","year":"2018","unstructured":"Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive growing of GANs for improved quality, stability, and variation. In ICLR."},{"key":"e_1_3_1_47_2","first-page":"12104","volume-title":"NeurIPS","author":"Karras Tero","year":"2020","unstructured":"Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. 2020. Training generative adversarial networks with limited data. In NeurIPS, Vol. 33. 12104\u201312114."},{"key":"e_1_3_1_48_2","first-page":"4401","volume-title":"CVPR","author":"Karras Tero","year":"2019","unstructured":"Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator architecture for generative adversarial networks. In CVPR. 4401\u20134410."},{"key":"e_1_3_1_49_2","first-page":"8107","volume-title":"CVPR","author":"Karras Tero","year":"2020","unstructured":"Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2020. Analyzing and improving the image quality of StyleGAN. In CVPR. 8107\u20138116."},{"key":"e_1_3_1_50_2","first-page":"8496","volume-title":"CVPR","author":"Kim Seung Wook","year":"2023","unstructured":"Seung Wook Kim, Bradley Brown, Kangxue Yin, Karsten Kreis, Katja Schwarz, Daiqing Li, Robin Rombach, Antonio Torralba, and Sanja Fidler. 2023. NeuralField-LDM: Scene generation with hierarchical latent diffusion models. In CVPR. 8496\u20138506."},{"key":"e_1_3_1_51_2","first-page":"2967","volume-title":"WACV","author":"Ko Jaehoon","year":"2023","unstructured":"Jaehoon Ko, Kyusun Cho, Daewon Choi, Kwangrok Ryoo, and Seungryong Kim. 2023. 3D GAN inversion with pose optimization. In WACV. 2967\u20132976."},{"key":"e_1_3_1_52_2","first-page":"299","volume-title":"ECCV","author":"Kowalski Marek","year":"2020","unstructured":"Marek Kowalski, Stephan J. Garbin, Virginia Estellers, Tadas Baltru\u0161aitis, Matthew Johnson, and Jamie Shotton. 2020. CONFIG: Controllable neural face image generation. In ECCV. 299\u2013315."},{"key":"e_1_3_1_53_2","first-page":"236","volume-title":"ECCV","author":"Kwak Jeong-gi","year":"2022","unstructured":"Jeong-gi Kwak, Yuanming Li, Dongsik Yoon, Donghyeon Kim, David Han, and Hanseok Ko. 2022. Injecting 3D perception of controllable NeRF-GAN into StyleGAN for editable portrait image synthesis. In ECCV. 236\u2013253."},{"key":"e_1_3_1_54_2","volume-title":"ICLR","author":"Kwon Mingi","year":"2023","unstructured":"Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. 2023. Diffusion models already have a semantic latent space. In ICLR."},{"key":"e_1_3_1_55_2","first-page":"20940","volume-title":"CVPR","author":"Lan Yushi","year":"2023","unstructured":"Yushi Lan, Xuyi Meng, Shuai Yang, Chen Change Loy, and Bo Dai. 2023. Self-supervised geometry-aware encoder for style-based 3D GAN inversion. In CVPR. 20940\u201320949."},{"key":"e_1_3_1_56_2","first-page":"5871","volume-title":"CVPR","author":"Liao Yiyi","year":"2020","unstructured":"Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas Geiger. 2020. Towards unsupervised learning of generative models for 3D controllable image synthesis. In CVPR. 5871\u20135880."},{"key":"e_1_3_1_57_2","first-page":"5721","volume-title":"ICCV","author":"Lin Chen-Hsuan","year":"2021","unstructured":"Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. 2021. BARF: Bundle-adjusting neural radiance fields. In ICCV. 5721\u20135731."},{"key":"e_1_3_1_58_2","volume-title":"ECCV Workshop","author":"Lin Connor Z.","year":"2022","unstructured":"Connor Z. Lin, David B. Lindell, Eric R. Chan, and Gordon Wetzstein. 2022. 3D GAN inversion for controllable portrait image animation. In ECCV Workshop."},{"key":"e_1_3_1_59_2","first-page":"15651","volume-title":"NeurIPS","author":"Liu Lingjie","year":"2020","unstructured":"Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020. Neural sparse voxel fields. In NeurIPS, Vol. 33. 15651\u201315663."},{"key":"e_1_3_1_60_2","first-page":"107","volume-title":"ECCV","author":"Liu Yuchen","year":"2022","unstructured":"Yuchen Liu, Zhixin Shu, Yijun Li, Zhe Lin, Richard Zhang, and S. Y. Kung. 2022. 3D-FM GAN: Towards 3D-controllable face manipulation. In ECCV. 107\u2013125."},{"key":"e_1_3_1_61_2","first-page":"1096","volume-title":"CVPR","author":"Liu Ziwei","year":"2016","unstructured":"Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. 2016. DeepFashion: Powering robust clothes recognition and retrieval with rich annotations. In CVPR. 1096\u20131104."},{"key":"e_1_3_1_62_2","first-page":"3730","volume-title":"ICCV","author":"Liu Ziwei","year":"2015","unstructured":"Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning face attributes in the wild. In ICCV. 3730\u20133738."},{"key":"e_1_3_1_63_2","doi-asserted-by":"publisher","DOI":"10.1145\/3306346.3323020"},{"key":"e_1_3_1_64_2","first-page":"347","article-title":"Marching cubes: A high resolution 3D surface construction algorithm","author":"Lorensen William E.","year":"1987","unstructured":"William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH (1987), 347\u2013353.","journal-title":"SIGGRAPH"},{"key":"e_1_3_1_65_2","article-title":"Adding 3D geometry control to diffusion models","author":"Ma Wufei","year":"2023","unstructured":"Wufei Ma, Qihao Liu, Jiahao Wang, Angtian Wang, Yaoyao Liu, Adam Kortylewski, and Alan Yuille. 2023. Adding 3D geometry control to diffusion models. arXiv preprint arXiv:2306.08103 (2023).","journal-title":"arXiv preprint arXiv:2306.08103"},{"key":"e_1_3_1_66_2","first-page":"7210","volume-title":"CVPR","author":"Martin-Brualla Ricardo","year":"2021","unstructured":"Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the wild: Neural radiance fields for unconstrained photo collections. In CVPR. 7210\u20137219."},{"key":"e_1_3_1_67_2","first-page":"4460","volume-title":"CVPR","author":"Mescheder Lars","year":"2019","unstructured":"Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. 2019. Occupancy networks: Learning 3D reconstruction in function space. In CVPR. 4460\u20134470."},{"key":"e_1_3_1_68_2","first-page":"405","volume-title":"ECCV","author":"Mildenhall Ben","year":"2020","unstructured":"Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV. 405\u2013421."},{"key":"e_1_3_1_69_2","first-page":"1","volume-title":"SIGGRAPH","author":"Mokady Ron","year":"2022","unstructured":"Ron Mokady, Omer Tov, Michal Yarom, Oran Lang, Inbar Mosseri, Tali Dekel, Daniel Cohen-Or, and Michal Irani. 2022. Self-distilled StyleGAN: Towards generation from internet photos. In SIGGRAPH. 1\u20139."},{"key":"e_1_3_1_70_2","article-title":"DragonDiffusion: Enabling drag-style manipulation on diffusion models","author":"Mou Chong","year":"2023","unstructured":"Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and Jian Zhang. 2023. DragonDiffusion: Enabling drag-style manipulation on diffusion models. arXiv preprint arXiv:2307.02421 (2023).","journal-title":"arXiv preprint arXiv:2307.02421"},{"key":"e_1_3_1_71_2","first-page":"4328","volume-title":"CVPR","author":"M\u00fcller Norman","year":"2023","unstructured":"Norman M\u00fcller, Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Bulo, Peter Kontschieder, and Matthias Nie\u00dfner. 2023. DiffRF: Rendering-guided 3D radiance field diffusion. In CVPR. 4328\u20134338."},{"key":"e_1_3_1_72_2","first-page":"3971","volume-title":"CVPR","author":"M\u00fcller Norman","year":"2022","unstructured":"Norman M\u00fcller, Andrea Simonelli, Lorenzo Porzi, Samuel Rota Bul\u00f2, Matthias Nie\u00dfner, and Peter Kontschieder. 2022. AutoRF: Learning 3D object radiance fields from single view observations. In CVPR. 3971\u20133980."},{"key":"e_1_3_1_73_2","doi-asserted-by":"publisher","DOI":"10.1145\/3528223.3530127"},{"key":"e_1_3_1_74_2","first-page":"7587","volume-title":"ICCV","author":"Nguyen-Phuoc Thu","year":"2019","unstructured":"Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. 2019. HoloGAN: Unsupervised learning of 3D representations from natural images. In ICCV. 7587\u20137596."},{"key":"e_1_3_1_75_2","first-page":"6767","volume-title":"NeurIPS","author":"Nguyen-Phuoc Thu","year":"2020","unstructured":"Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, and Niloy Mitra. 2020. BlockGAN: Learning 3D object-aware scene representations from unlabelled images. In NeurIPS, Vol. 33. 6767\u20136778."},{"key":"e_1_3_1_76_2","first-page":"951","volume-title":"3DV","author":"Niemeyer Michael","year":"2021","unstructured":"Michael Niemeyer and Andreas Geiger. 2021. CAMPARI: Camera-aware decomposed generative neural radiance fields. In 3DV. 951\u2013961."},{"key":"e_1_3_1_77_2","first-page":"11453","volume-title":"CVPR","author":"Niemeyer Michael","year":"2021","unstructured":"Michael Niemeyer and Andreas Geiger. 2021. GIRAFFE: Representing scenes as compositional generative neural feature fields. In CVPR. 11453\u201311464."},{"key":"e_1_3_1_78_2","first-page":"3501","volume-title":"CVPR","author":"Niemeyer Michael","year":"2020","unstructured":"Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020. Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision. In CVPR. 3501\u20133512."},{"key":"e_1_3_1_79_2","volume-title":"ICLR","author":"Noguchi Atsuhiro","year":"2020","unstructured":"Atsuhiro Noguchi and Tatsuya Harada. 2020. RGBD-GAN: Unsupervised 3D representation learning from natural image datasets via RGBD image synthesis. In ICLR."},{"key":"e_1_3_1_80_2","first-page":"13503","article-title":"StyleSDF: High-resolution 3D-consistent image and geometry generation","author":"Or-El Roy","year":"2022","unstructured":"Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and Ira Kemelmacher-Shlizerman. 2022. StyleSDF: High-resolution 3D-consistent image and geometry generation. CVPR (2022), 13503\u201313513.","journal-title":"CVPR"},{"key":"e_1_3_1_81_2","volume-title":"SIGGRAPH","author":"Pan Xingang","year":"2023","unstructured":"Xingang Pan, Ayush Tewari, Thomas Leimk\u00fchler, Lingjie Liu, Abhimitra Meka, and Christian Theobalt. 2023. Drag your GAN: Interactive point-based manipulation on the generative image manifold. In SIGGRAPH."},{"key":"e_1_3_1_82_2","first-page":"20002","volume-title":"NeurIPS","author":"Pan Xingang","year":"2021","unstructured":"Xingang Pan, Xudong Xu, Chen Change Loy, Christian Theobalt, and Bo Dai. 2021. A shading-guided generative implicit model for shape-accurate 3D-aware image synthesis. In NeurIPS. 20002\u201320013."},{"key":"e_1_3_1_83_2","first-page":"165","volume-title":"CVPR","author":"Park Jeong Joon","year":"2019","unstructured":"Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. DeepSDF: Learning continuous signed distance functions for shape representation. In CVPR. 165\u2013174."},{"key":"e_1_3_1_84_2","first-page":"523","volume-title":"ECCV","author":"Peng Songyou","year":"2020","unstructured":"Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional occupancy networks. In ECCV. 523\u2013540."},{"key":"e_1_3_1_85_2","first-page":"497","volume-title":"SIGGRAPH","author":"Ramamoorthi Ravi","year":"2001","unstructured":"Ravi Ramamoorthi and Pat Hanrahan. 2001. An efficient representation for irradiance environment maps. In SIGGRAPH. 497\u2013500."},{"key":"e_1_3_1_86_2","first-page":"1558","volume-title":"CVPR","author":"Rebain Daniel","year":"2022","unstructured":"Daniel Rebain, Mark Matthews, Kwang Moo Yi, Dmitry Lagun, and Andrea Tagliasacchi. 2022. LOLNeRF: Learn from one look. In CVPR. 1558\u20131567."},{"key":"e_1_3_1_87_2","first-page":"14335","volume-title":"ICCV","author":"Reiser Christian","year":"2021","unstructured":"Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF: Speeding up neural radiance fields with thousands of tiny MLPs. In ICCV. 14335\u201314345."},{"key":"e_1_3_1_88_2","first-page":"10901","volume-title":"ICCV","author":"Reizenstein Jeremy","year":"2021","unstructured":"Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David Novotny. 2021. Common objects in 3D: Large-scale learning and evaluation of real-life 3D category reconstruction. In ICCV. 10901\u201310911."},{"key":"e_1_3_1_89_2","first-page":"12932","volume-title":"CVPR","author":"Rematas Konstantinos","year":"2022","unstructured":"Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan, Jonathan T. Barron, Andrea Tagliasacchi, Thomas Funkhouser, and Vittorio Ferrari. 2022. Urban radiance fields. In CVPR. 12932\u201312942."},{"key":"e_1_3_1_90_2","doi-asserted-by":"publisher","DOI":"10.1145\/3544777"},{"key":"e_1_3_1_91_2","first-page":"6229","volume-title":"CVPR","author":"Sajjadi Mehdi S. M.","year":"2022","unstructured":"Mehdi S. M. Sajjadi and Henning Meyer. 2022. Scene representation transformer: Geometry-free novel view synthesis through set-latent scene representations. In CVPR. 6229\u20136238."},{"key":"e_1_3_1_92_2","first-page":"2226","volume-title":"NeurIPS","author":"Salimans Tim","year":"2016","unstructured":"Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 2016. Improved techniques for training GANs. In NeurIPS. 2226\u20132234."},{"key":"e_1_3_1_93_2","article-title":"VQ3D: Learning a 3D-aware generative model on ImageNet","author":"Sargent Kyle","year":"2023","unstructured":"Kyle Sargent, Jing Yu Koh, Han Zhang, Huiwen Chang, Charles Herrmann, Pratul Srinivasan, Jiajun Wu, and Deqing Sun. 2023. VQ3D: Learning a 3D-aware generative model on ImageNet. arXiv preprint arXiv:2302.06833 (2023).","journal-title":"arXiv preprint arXiv:2302.06833"},{"key":"e_1_3_1_94_2","first-page":"4104","volume-title":"CVPR","author":"Schonberger Johannes L.","year":"2016","unstructured":"Johannes L. Schonberger and Jan-Michael Frahm. 2016. Structure-from-motion revisited. In CVPR. 4104\u20134113."},{"key":"e_1_3_1_95_2","first-page":"20154","volume-title":"NeurIPS","author":"Schwarz Katja","year":"2020","unstructured":"Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. 2020. GRAF: Generative radiance fields for 3D-aware image synthesis. In NeurIPS, Vol. 33. 20154\u201320166."},{"key":"e_1_3_1_96_2","first-page":"33999","volume-title":"NeurIPS","author":"Schwarz Katja","year":"2022","unstructured":"Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao, and Andreas Geiger. 2022. VoxGRAF: Fast 3D-aware image synthesis with sparse voxel grids. In NeurIPS, Vol. 35. 33999\u201334011."},{"key":"e_1_3_1_97_2","first-page":"9240","volume-title":"CVPR","author":"Shen Yujun","year":"2020","unstructured":"Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. 2020. Interpreting the latent space of GANs for semantic face editing. In CVPR. 9240\u20139249."},{"key":"e_1_3_1_98_2","first-page":"1532","volume-title":"CVPR","author":"Shen Yujun","year":"2021","unstructured":"Yujun Shen and Bolei Zhou. 2021. Closed-form factorization of latent semantics in GANs. In CVPR. 1532\u20131540."},{"key":"e_1_3_1_99_2","first-page":"6258","volume-title":"CVPR","author":"Shi Yichun","year":"2021","unstructured":"Yichun Shi, Divyansh Aggarwal, and Anil K. Jain. 2021. Lifting 2D StyleGAN for 3D-aware face generation. In CVPR. 6258\u20136266."},{"key":"e_1_3_1_100_2","article-title":"DragDiffusion: Harnessing diffusion models for interactive point-based image editing","author":"Shi Yujun","year":"2023","unstructured":"Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vincent Y. F. Tan, and Song Bai. 2023. DragDiffusion: Harnessing diffusion models for interactive point-based image editing. arXiv preprint arXiv:2306.14435 (2023).","journal-title":"arXiv preprint arXiv:2306.14435"},{"key":"e_1_3_1_101_2","first-page":"13062","volume-title":"CVPR","author":"Shi Zifan","year":"2023","unstructured":"Zifan Shi, Yujun Shen, Yinghao Xu, Sida Peng, Yiyi Liao, Sheng Guo, Qifeng Chen, and Dit-Yan Yeung. 2023. Learning 3D-aware image synthesis with unknown pose distribution. In CVPR. 13062\u201313071."},{"key":"e_1_3_1_102_2","first-page":"406","volume-title":"ECCV","author":"Shi Zifan","year":"2022","unstructured":"Zifan Shi, Yujun Shen, Jiapeng Zhu, Dit-Yan Yeung, and Qifeng Chen. 2022. 3D-aware indoor scene synthesis with depth priors. In ECCV. 406\u2013422."},{"key":"e_1_3_1_103_2","first-page":"7921","volume-title":"NeurIPS","author":"Shi Zifan","year":"2022","unstructured":"Zifan Shi, Yinghao Xu, Yujun Shen, Deli Zhao, Qifeng Chen, and Dit-Yan Yeung. 2022. Improving 3D-aware image synthesis with a geometry-aware discriminator. In NeurIPS, Vol. 35. 7921\u20137932."},{"key":"e_1_3_1_104_2","first-page":"14083","volume-title":"ICCV","author":"Shoshan Alon","year":"2021","unstructured":"Alon Shoshan, Nadav Bhonker, Igor Kviatkovsky, and Gerard Medioni. 2021. GAN-control: Explicitly controllable GANs. In ICCV. 14083\u201314093."},{"key":"e_1_3_1_105_2","first-page":"7462","volume-title":"NeurIPS","author":"Sitzmann Vincent","year":"2020","unstructured":"Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. 2020. Implicit neural representations with periodic activation functions. In NeurIPS, Vol. 33. 7462\u20137473."},{"key":"e_1_3_1_106_2","first-page":"19313","article-title":"Light field networks: Neural scene representations with single-evaluation rendering","volume":"34","author":"Sitzmann Vincent","year":"2021","unstructured":"Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. 2021. Light field networks: Neural scene representations with single-evaluation rendering. NeurIPS 34 (2021), 19313\u201319325.","journal-title":"NeurIPS"},{"key":"e_1_3_1_107_2","first-page":"2437","volume-title":"CVPR","author":"Sitzmann Vincent","year":"2019","unstructured":"Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nie\u00dfner, Gordon Wetzstein, and Michael Zollhofer. 2019. DeepVoxels: Learning persistent 3D feature embeddings. In CVPR. 2437\u20132446."},{"key":"e_1_3_1_108_2","first-page":"1119","article-title":"Scene representation networks: Continuous 3D-structure-aware neural scene representations","volume":"32","author":"Sitzmann Vincent","year":"2019","unstructured":"Vincent Sitzmann, Michael Zollh\u00f6fer, and Gordon Wetzstein. 2019. Scene representation networks: Continuous 3D-structure-aware neural scene representations. NeurIPS 32 (2019), 1119\u20131130.","journal-title":"NeurIPS"},{"key":"e_1_3_1_109_2","volume-title":"ICLR","author":"Skorokhodov Ivan","year":"2023","unstructured":"Ivan Skorokhodov, Aliaksandr Siarohin, Yinghao Xu, Jian Ren, Hsin-Ying Lee, Peter Wonka, and Sergey Tulyakov. 2023. 3D generation on ImageNet. In ICLR."},{"key":"e_1_3_1_110_2","first-page":"24487","volume-title":"NeurIPS","author":"Skorokhodov Ivan","year":"2022","unstructured":"Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, and Peter Wonka. 2022. EpiGRAF: Rethinking training of 3D GANs. In NeurIPS, Vol. 35. 24487\u201324501."},{"key":"e_1_3_1_111_2","volume-title":"ICLR","author":"Song Jiaming","year":"2021","unstructured":"Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising diffusion implicit models. In ICLR."},{"key":"e_1_3_1_112_2","volume-title":"SIGGRAPH Asia","author":"Sun Jingxiang","year":"2022","unstructured":"Jingxiang Sun, Xuan Wang, Yichun Shi, Lizhen Wang, Jue Wang, and Yebin Liu. 2022. IDE-3D: Interactive disentangled editing for high-resolution 3D-aware portrait synthesis. In SIGGRAPH Asia."},{"key":"e_1_3_1_113_2","first-page":"20991","volume-title":"CVPR","author":"Sun Jingxiang","year":"2023","unstructured":"Jingxiang Sun, Xuan Wang, Lizhen Wang, Xiaoyu Li, Yong Zhang, Hongwen Zhang, and Yebin Liu. 2023. Next3D: Generative neural texture rasterization for 3D-aware head avatars. In CVPR. 20991\u201321002."},{"key":"e_1_3_1_114_2","first-page":"7672","volume-title":"CVPR","author":"Sun Jingxiang","year":"2022","unstructured":"Jingxiang Sun, Xuan Wang, Yong Zhang, Xiaoyu Li, Qi Zhang, Yebin Liu, and Jue Wang. 2022. FENeRF: Face editing in neural radiance fields. In CVPR. 7672\u20137682."},{"key":"e_1_3_1_115_2","first-page":"16331","volume-title":"NeurIPS","author":"Sun Keqiang","year":"2022","unstructured":"Keqiang Sun, Shangzhe Wu, Zhaoyang Huang, Ning Zhang, Quan Wang, and HongSheng Li. 2022. Controllable 3D face synthesis with conditional generative occupancy fields. In NeurIPS, Vol. 35. 16331\u201316343."},{"key":"e_1_3_1_116_2","first-page":"2818","volume-title":"CVPR","author":"Szegedy Christian","year":"2016","unstructured":"Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception architecture for computer vision. In CVPR. 2818\u20132826."},{"key":"e_1_3_1_117_2","first-page":"8248","volume-title":"CVPR","author":"Tancik Matthew","year":"2022","unstructured":"Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T. Barron, and Henrik Kretzschmar. 2022. Block-NeRF: Scalable large scene neural view synthesis. In CVPR. 8248\u20138258."},{"key":"e_1_3_1_118_2","first-page":"6141","volume-title":"CVPR","author":"Tewari Ayush","year":"2020","unstructured":"Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian Bernard, Hans-Peter Seidel, Patrick P\u00e9rez, Michael Z\u00f6llhofer, and Christian Theobalt. 2020. StyleRig: Rigging StyleGAN for 3D control over portrait images. In CVPR. 6141\u20136150."},{"key":"e_1_3_1_119_2","doi-asserted-by":"publisher","DOI":"10.1145\/3414685.3417803"},{"key":"e_1_3_1_120_2","first-page":"1516","volume-title":"CVPR","author":"Tewari Ayush","year":"2022","unstructured":"Ayush Tewari, Mallikarjun B. R., Xingang Pan, Ohad Fried, Maneesh Agrawala, Christian Theobalt, other. 2022. Disentangled3D: Learning a 3D generative model with disentangled geometry and appearance from monocular images. In CVPR. 1516\u20131525."},{"key":"e_1_3_1_121_2","first-page":"703","volume-title":"Computer Graphics Forum","author":"Tewari Ayush","year":"2022","unstructured":"Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Wang Yifan, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, and Stephen Lombardi. 2022. Advances in neural rendering. In Computer Graphics Forum, Vol. 41. 703\u2013735."},{"key":"e_1_3_1_122_2","first-page":"1274","volume-title":"ICCV Workshops","author":"Tewari Ayush","year":"2017","unstructured":"Ayush Tewari, Michael Zollhofer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard, Patrick Perez, and Christian Theobalt. 2017. MoFA: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In ICCV Workshops. 1274\u20131283."},{"key":"e_1_3_1_123_2","series-title":"Proceedings of Machine Learning Research","first-page":"9786","volume-title":"ICML","volume":"119","author":"Voynov Andrey","year":"2020","unstructured":"Andrey Voynov and Artem Babenko. 2020. Unsupervised discovery of interpretable directions in the GAN latent space. In ICML(Proceedings of Machine Learning Research, Vol. 119). 9786\u20139796."},{"key":"e_1_3_1_124_2","first-page":"11285","volume-title":"CVPR","author":"Wang Jianyuan","year":"2022","unstructured":"Jianyuan Wang, Ceyuan Yang, Yinghao Xu, Yujun Shen, Hongdong Li, and Bolei Zhou. 2022. Improving GAN equilibrium by raising spatial awareness. In CVPR. 11285\u201311293."},{"key":"e_1_3_1_125_2","doi-asserted-by":"publisher","DOI":"10.1145\/3528223.3530087"},{"key":"e_1_3_1_126_2","first-page":"318","volume-title":"ECCV","author":"Wang Xiaolong","year":"2016","unstructured":"Xiaolong Wang and Abhinav Gupta. 2016. Generative image modeling using style and structure adversarial networks. In ECCV. 318\u2013335."},{"key":"e_1_3_1_127_2","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2003.819861"},{"key":"e_1_3_1_128_2","article-title":"NeRF\u2013: Neural radiance fields without known camera parameters","author":"Wang Zirui","year":"2021","unstructured":"Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. 2021. NeRF\u2013: Neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021).","journal-title":"arXiv preprint arXiv:2102.07064"},{"key":"e_1_3_1_129_2","article-title":"Novel view synthesis with diffusion models","author":"Watson Daniel","year":"2022","unstructured":"Daniel Watson, William Chan, Ricardo Martin-Brualla, Jonathan Ho, Andrea Tagliasacchi, and Mohammad Norouzi. 2022. Novel view synthesis with diffusion models. arXiv preprint arXiv:2210.04628 (2022).","journal-title":"arXiv preprint arXiv:2210.04628"},{"key":"e_1_3_1_130_2","first-page":"82","article-title":"Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling","volume":"29","author":"Wu Jiajun","year":"2016","unstructured":"Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. NeurIPS 29 (2016), 82\u201390.","journal-title":"NeurIPS"},{"key":"e_1_3_1_131_2","first-page":"2256","volume-title":"CVPR","author":"Xia Weihao","year":"2021","unstructured":"Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu. 2021. TediGAN: Text-guided diverse face image generation and manipulation. In CVPR. 2256\u20132265."},{"key":"e_1_3_1_132_2","article-title":"Towards open-world text-guided face image generation and manipulation","author":"Xia Weihao","year":"2021","unstructured":"Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu. 2021. Towards open-world text-guided face image generation and manipulation. arxiv preprint arxiv: 2104.08910 (2021).","journal-title":"arxiv preprint arxiv: 2104.08910"},{"issue":"3","key":"e_1_3_1_133_2","first-page":"3121","article-title":"GAN inversion: A survey","volume":"45","author":"Xia Weihao","year":"2022","unstructured":"Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. 2022. GAN inversion: A survey. TPAMI 45, 3 (2022), 3121\u20133138.","journal-title":"TPAMI"},{"key":"e_1_3_1_134_2","article-title":"3D-aware image generation using 2D diffusion models","author":"Xiang Jianfeng","year":"2023","unstructured":"Jianfeng Xiang, Jiaolong Yang, Binbin Huang, and Xin Tong. 2023. 3D-aware image generation using 2D diffusion models. arXiv preprint arXiv:2303.17905 (2023).","journal-title":"arXiv preprint arXiv:2303.17905"},{"key":"e_1_3_1_135_2","first-page":"321","volume-title":"CVPR","author":"Xie Jiaxin","year":"2023","unstructured":"Jiaxin Xie, Hao Ouyang, Jingtan Piao, Chenyang Lei, and Qifeng Chen. 2023. High-fidelity 3D GAN inversion by pseudo-multi-view optimization. In CVPR. 321\u2013331."},{"key":"e_1_3_1_136_2","first-page":"20683","volume-title":"NeurIPS","author":"Xu Xudong","year":"2021","unstructured":"Xudong Xu, Xingang Pan, Dahua Lin, and Bo Dai. 2021. Generative occupancy fields for 3D surface-aware image synthesis. In NeurIPS. 20683\u201320695."},{"key":"e_1_3_1_137_2","first-page":"4402","volume-title":"CVPR","author":"Xu Yinghao","year":"2023","unstructured":"Yinghao Xu, Menglei Chai, Zifan Shi, Sida Peng, Ivan Skorokhodov, Aliaksandr Siarohin, Ceyuan Yang, Yujun Shen, Hsin-Ying Lee, and Bolei Zhou. 2023. DisCoScene: Spatially disentangled generative radiance fields for controllable 3D-aware scene synthesis. In CVPR. 4402\u20134412."},{"key":"e_1_3_1_138_2","first-page":"18430","volume-title":"CVPR","author":"Xu Yinghao","year":"2022","unstructured":"Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, and Bolei Zhou. 2022. 3D-aware image synthesis via learning structural and textural representations. In CVPR. 18430\u201318439."},{"key":"e_1_3_1_139_2","volume-title":"CVPR","author":"Xue Yang","year":"2022","unstructured":"Yang Xue, Yuheng Li, Krishna Kumar Singh, and Yong Jae Lee. 2022. GIRAFFE-HD: A high-resolution 3D-aware generative model. In CVPR."},{"key":"e_1_3_1_140_2","first-page":"3973","volume-title":"CVPR","author":"Yang Linjie","year":"2015","unstructured":"Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2015. A large-scale car dataset for fine-grained categorization and verification. In CVPR. 3973\u20133981."},{"key":"e_1_3_1_141_2","article-title":"3DHumanGAN: Towards photo-realistic 3D-aware human image generation","author":"Yang Zhuoqian","year":"2022","unstructured":"Zhuoqian Yang, Shikai Li, Wayne Wu, and Bo Dai. 2022. 3DHumanGAN: Towards photo-realistic 3D-aware human image generation. arXiv preprint arXiv:2212.07378 (2022).","journal-title":"arXiv preprint arXiv:2212.07378"},{"key":"e_1_3_1_142_2","first-page":"4578","volume-title":"CVPR","author":"Yu Alex","year":"2021","unstructured":"Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021. pixelNeRF: Neural radiance fields from one or few images. In CVPR. 4578\u20134587."},{"key":"e_1_3_1_143_2","article-title":"LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop","author":"Yu Fisher","year":"2015","unstructured":"Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. 2015. LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).","journal-title":"arXiv preprint arXiv:1506.03365"},{"key":"e_1_3_1_144_2","first-page":"14263","volume-title":"ICCV","author":"Y\u00fcksel O\u011fuz Kaan","year":"2021","unstructured":"O\u011fuz Kaan Y\u00fcksel, Enis Simsar, Ezgi G\u00fclperi Er, and Pinar Yanardag. 2021. LatentCLR: A contrastive learning approach for unsupervised discovery of interpretable directions. In ICCV. 14263\u201314272."},{"key":"e_1_3_1_145_2","article-title":"3DShape2VecSet: A 3D shape representation for neural fields and generative diffusion models","author":"Zhang Biao","year":"2023","unstructured":"Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 2023. 3DShape2VecSet: A 3D shape representation for neural fields and generative diffusion models. arXiv preprint arXiv:2301.11445 (2023).","journal-title":"arXiv preprint arXiv:2301.11445"},{"key":"e_1_3_1_146_2","first-page":"339","volume-title":"ECCV","author":"Zhang Jichao","year":"2022","unstructured":"Jichao Zhang, Enver Sangineto, Hao Tang, Aliaksandr Siarohin, Zhun Zhong, Nicu Sebe, and Wei Wang. 2022. 3D-aware semantic-guided generative model for human synthesis. In ECCV. 339\u2013356."},{"key":"e_1_3_1_147_2","article-title":"Nerf++: Analyzing and improving neural radiance fields","author":"Zhang Kai","year":"2020","unstructured":"Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. Nerf++: Analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020).","journal-title":"arXiv preprint arXiv:2010.07492"},{"key":"e_1_3_1_148_2","first-page":"586","volume-title":"CVPR","author":"Zhang Richard","year":"2018","unstructured":"Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR. 586\u2013595."},{"key":"e_1_3_1_149_2","first-page":"18450","volume-title":"CVPR","author":"Zhang Xuanmeng","year":"2022","unstructured":"Xuanmeng Zhang, Zhedong Zheng, Daiheng Gao, Bang Zhang, Pan Pan, and Yi Yang. 2022. Multi-view consistent generative adversarial networks for 3D-aware image synthesis. In CVPR. 18450\u201318459."},{"key":"e_1_3_1_150_2","first-page":"18","volume-title":"ECCV","author":"Zhao Xiaoming","year":"2022","unstructured":"Xiaoming Zhao, Fangchang Ma, David G\u00fcera, Zhile Ren, Alexander G. Schwing, and Alex Colburn. 2022. Generative multiplane images: Making a 2D GAN 3D-aware. In ECCV. 18\u201335."},{"key":"e_1_3_1_151_2","article-title":"CIPS-3D: A 3D-aware generator of GANs based on conditionally-independent pixel synthesis","author":"Zhou Peng","year":"2021","unstructured":"Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. 2021. CIPS-3D: A 3D-aware generator of GANs based on conditionally-independent pixel synthesis. arXiv preprint arXiv:2110.09788 (2021).","journal-title":"arXiv preprint arXiv:2110.09788"},{"key":"e_1_3_1_152_2","first-page":"592","volume-title":"ECCV","author":"Zhu Jiapeng","year":"2020","unstructured":"Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. 2020. In-domain GAN inversion for real image editing. In ECCV. Springer, 592\u2013608."},{"key":"e_1_3_1_153_2","first-page":"118","article-title":"Visual object networks: Image generation with disentangled 3D representations","author":"Zhu Jun-Yan","year":"2018","unstructured":"Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Josh Tenenbaum, and Bill Freeman. 2018. Visual object networks: Image generation with disentangled 3D representations. NeurIPS (2018), 118\u2013129.","journal-title":"NeurIPS"}],"container-title":["ACM Computing Surveys"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3626193","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T11:51:34Z","timestamp":1723463494000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3626193"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,9]]},"references-count":152,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2024,4,30]]}},"alternative-id":["10.1145\/3626193"],"URL":"https:\/\/doi.org\/10.1145\/3626193","relation":{},"ISSN":["0360-0300","1557-7341"],"issn-type":[{"type":"print","value":"0360-0300"},{"type":"electronic","value":"1557-7341"}],"subject":[],"published":{"date-parts":[[2023,11,9]]},"assertion":[{"value":"2022-12-20","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-09-26","order":2,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-11-09","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}