{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:34:59Z","timestamp":1730327699480,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":59,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2024,3,4]]},"DOI":"10.1145\/3616855.3635785","type":"proceedings-article","created":{"date-parts":[[2024,3,4]],"date-time":"2024-03-04T23:18:12Z","timestamp":1709594292000},"page":"350-359","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["Likelihood-Based Methods Improve Parameter Estimation in Opinion Dynamics Models"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2886-7338","authenticated-orcid":false,"given":"Jacopo","family":"Lenti","sequence":"first","affiliation":[{"name":"CENTAI & Sapienza University, Turin, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6846-5718","authenticated-orcid":false,"given":"Corrado","family":"Monti","sequence":"additional","affiliation":[{"name":"CENTAI, Turin, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2415-494X","authenticated-orcid":false,"given":"Gianmarco","family":"De Francisci Morales","sequence":"additional","affiliation":[{"name":"CENTAI, Turin, Italy"}]}],"member":"320","published-online":{"date-parts":[[2024,3,4]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467","author":"Abadi Mart'in","year":"2016","unstructured":"Mart'in Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 (2016)."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219983"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0186492"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecolmodel.2021.109685"},{"key":"e_1_3_2_1_5_1","first-page":"10435","article-title":"Automatic differentiation of programs with discrete randomness","volume":"35","author":"Arya Gaurav","year":"2022","unstructured":"Gaurav Arya, Moritz Schauer, Frank Sch\"afer, and Christopher Rackauckas. 2022. Automatic differentiation of programs with discrete randomness. Advances in Neural Information Processing Systems , Vol. 35 (2022), 10435--10447.","journal-title":"Advances in Neural Information Processing Systems"},{"volume-title":"Breaking the Social Media Prism: How to Make Our Platforms Less Polarizing","author":"Bail Chris","key":"e_1_3_2_1_6_1","unstructured":"Chris Bail. 2021. Breaking the Social Media Prism: How to Make Our Platforms Less Polarizing. Princeton University Press."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jedc.2016.10.005"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevX.11.011012"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.21105\/joss.04622"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/3539597.3570442"},{"key":"e_1_3_2_1_11_1","volume-title":"Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.","author":"Bradbury James","year":"2018","unstructured":"James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of PythonNumPy programs. http:\/\/github.com\/google\/jax"},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/3336191.3371825"},{"key":"e_1_3_2_1_13_1","volume-title":"Differentiable Agent-based Epidemiology. arXiv:2207.09714","author":"Chopra Ayush","year":"2022","unstructured":"Ayush Chopra, Alexander Rodr'iguez, Jayakumar Subramanian, Balaji Krishnamurthy, B Aditya Prakash, and Ramesh Raskar. 2022. Differentiable Agent-based Epidemiology. arXiv:2207.09714 (2022)."},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.2023301118"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1912789117"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2021.12.069"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1142\/S0219525900000078"},{"key":"e_1_3_2_1_18_1","volume-title":"Variational inference with agent-based models. arXiv:1605.04360","author":"Dong Wen","year":"2016","unstructured":"Wen Dong. 2016. Variational inference with agent-based models. arXiv:1605.04360 (2016)."},{"key":"e_1_3_2_1_19_1","volume-title":"Black-box Bayesian inference for economic agent-based models. arXiv:2202.00625","author":"Dyer Joel","year":"2022","unstructured":"Joel Dyer, Patrick Cannon, J Doyne Farmer, and Sebastian Schmon. 2022. Black-box Bayesian inference for economic agent-based models. arXiv:2202.00625 (2022)."},{"volume-title":"Computer simulation validation","author":"Fagiolo Giorgio","key":"e_1_3_2_1_20_1","unstructured":"Giorgio Fagiolo, Mattia Guerini, Francesco Lamperti, Alessio Moneta, and Andrea Roventini. 2019. Validation of agent-based models in economics and finance. In Computer simulation validation. Springer, 763--787."},{"key":"e_1_3_2_1_21_1","volume-title":"Issues in reproducible simulation research. Bulletin of mathematical biology","author":"Fitzpatrick Ben G","year":"2019","unstructured":"Ben G Fitzpatrick. 2019. Issues in reproducible simulation research. Bulletin of mathematical biology , Vol. 81 (2019), 1--6."},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1145\/3140565"},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jedc.2017.01.014"},{"key":"e_1_3_2_1_24_1","volume-title":"Calibration of individual-based models to epidemiological data: A systematic review. PLoS computational biology","author":"Hazelbag C Marijn","year":"2020","unstructured":"C Marijn Hazelbag, Jonathan Dushoff, Emanuel M Dominic, Zinhle E Mthombothi, and Wim Delva. 2020. Calibration of individual-based models to epidemiological data: A systematic review. PLoS computational biology , Vol. 16, 5 (2020), e1007893."},{"key":"e_1_3_2_1_25_1","volume-title":"Bayesian parameter inference for individual-based models using a Particle Markov Chain Monte Carlo method. Environmental modelling & software","author":"Kattwinkel Mira","year":"2017","unstructured":"Mira Kattwinkel and Peter Reichert. 2017. Bayesian parameter inference for individual-based models using a Particle Markov Chain Monte Carlo method. Environmental modelling & software , Vol. 87 (2017), 110--119."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/264029.264064"},{"key":"e_1_3_2_1_27_1","volume-title":"A discrete nonlinear and non-autonomous model of consensus formation. Communications in difference equations","author":"Krause Ulrich","year":"2000","unstructured":"Ulrich Krause. 2000. A discrete nonlinear and non-autonomous model of consensus formation. Communications in difference equations , Vol. 2000 (2000), 227--236."},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jedc.2017.09.006"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecosta.2017.01.006"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jedc.2018.03.011"},{"key":"e_1_3_2_1_31_1","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0250817"},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.18564\/jasss.2897"},{"key":"e_1_3_2_1_33_1","volume-title":"ADEV: Sound automatic differentiation of expected values of probabilistic programs. ACM on Programming Languages","author":"Lew Alexander K","year":"2023","unstructured":"Alexander K Lew, Mathieu Huot, Sam Staton, and Vikash K Mansinghka. 2023. ADEV: Sound automatic differentiation of expected values of probabilistic programs. ACM on Programming Languages , Vol. 7, POPL (2023), 121--153."},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1142\/S0129183107011789"},{"key":"e_1_3_2_1_35_1","volume-title":"Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo. Computational Economics","author":"Lux Thomas","year":"2021","unstructured":"Thomas Lux. 2021. Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo. Computational Economics (2021), 1--27."},{"volume-title":"Artificial Intelligence, Learning and Computation in Economics and Finance","author":"Lux Thomas","key":"e_1_3_2_1_36_1","unstructured":"Thomas Lux. 2023. Sequential Monte Carlo Squared for Agent-Based Models. In Artificial Intelligence, Learning and Computation in Economics and Finance. Springer, 59--69."},{"volume-title":"Handbook of computational economics.","author":"Lux Thomas","key":"e_1_3_2_1_37_1","unstructured":"Thomas Lux and Remco CJ Zwinkels. 2018. Empirical validation of agent-based models. In Handbook of computational economics. Vol. 4. Elsevier, 437--488."},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-022-21720-4"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1145\/3394486.3403119"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/3543507.3583468"},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-023-35536-3"},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"crossref","unstructured":"Cameron Musco Christopher Musco and Charalampos E Tsourakakis. 2018. Minimizing polarization and disagreement in social networks. In 2018 world wide web conference. 369--378.","DOI":"10.1145\/3178876.3186103"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"crossref","unstructured":"Eli Pariser. 2011. The filter bubble: What the Internet is hiding from you. penguin UK.","DOI":"10.3139\/9783446431164"},{"key":"e_1_3_2_1_44_1","volume-title":"Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems","author":"Paszke Adam","year":"2019","unstructured":"Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems , Vol. 32 (2019)."},{"key":"e_1_3_2_1_45_1","volume-title":"Opinion dynamics in social networks: From models to data. arXiv:2201.01322","author":"Peralta Antonio F","year":"2022","unstructured":"Antonio F Peralta, J\u00e1nos Kert\u00e9sz, and Gerardo I niguez. 2022. Opinion dynamics in social networks: From models to data. arXiv:2201.01322 (2022)."},{"key":"e_1_3_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1609\/icwsm.v17i1.22181"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jedc.2020.103859"},{"key":"e_1_3_2_1_48_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10614-021-10095-9"},{"key":"e_1_3_2_1_49_1","volume-title":"Bayesian calibration of differentiable agent-based models. arXiv:2305.15340","author":"Quera-Bofarull Arnau","year":"2023","unstructured":"Arnau Quera-Bofarull, Ayush Chopra, Anisoara Calinescu, Michael Wooldridge, and Joel Dyer. 2023. Bayesian calibration of differentiable agent-based models. arXiv:2305.15340 (2023)."},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jedc.2021.104082"},{"key":"e_1_3_2_1_51_1","volume-title":"Vito DP Servedio, and Francesca Tria","author":"Alina","year":"2017","unstructured":"Alina S^irbu, Vittorio Loreto, Vito DP Servedio, and Francesca Tria. 2017. Opinion dynamics: models, extensions and external effects. Participatory sensing, opinions and collective awareness (2017), 363--401."},{"key":"e_1_3_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.envsoft.2021.104978"},{"key":"e_1_3_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1142\/S0129183100000936"},{"key":"e_1_3_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.12688\/openreseurope.14144.2"},{"key":"e_1_3_2_1_55_1","volume-title":"The drivers of online polarization: fitting models to data. Information Sciences","author":"Valensise Carlo M","year":"2023","unstructured":"Carlo M Valensise, Matteo Cinelli, and Walter Quattrociocchi. 2023. The drivers of online polarization: fitting models to data. Information Sciences (2023), 119152."},{"key":"e_1_3_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecolmodel.2015.05.020"},{"key":"e_1_3_2_1_57_1","first-page":"2","article-title":"Making models match: Replicating an agent-based model","volume":"10","author":"Wilensky Uri","year":"2007","unstructured":"Uri Wilensky and William Rand. 2007. Making models match: Replicating an agent-based model. Journal of Artificial Societies and Social Simulation, Vol. 10, 4 (2007), 2.","journal-title":"Journal of Artificial Societies and Social Simulation"},{"key":"e_1_3_2_1_58_1","first-page":"8","article-title":"Empirical validation of agent-based models: Alternatives and prospects","volume":"10","author":"Windrum Paul","year":"2007","unstructured":"Paul Windrum, Giorgio Fagiolo, and Alessio Moneta. 2007. Empirical validation of agent-based models: Alternatives and prospects. Journal of Artificial Societies and Social Simulation, Vol. 10, 2 (2007), 8.","journal-title":"Journal of Artificial Societies and Social Simulation"},{"key":"e_1_3_2_1_59_1","volume-title":"Advances in Neural Information Processing Systems","volume":"29","author":"Xu Zhen","year":"2016","unstructured":"Zhen Xu, Wen Dong, and Sargur N Srihari. 2016. Using social dynamics to make individual predictions: variational inference with a stochastic kinetic model. Advances in Neural Information Processing Systems , Vol. 29 (2016). io"}],"event":{"name":"WSDM '24: The 17th ACM International Conference on Web Search and Data Mining","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data","SIGIR ACM Special Interest Group on Information Retrieval"],"location":"Merida Mexico","acronym":"WSDM '24"},"container-title":["Proceedings of the 17th ACM International Conference on Web Search and Data Mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3616855.3635785","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,4]],"date-time":"2024-04-04T10:37:10Z","timestamp":1712227030000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3616855.3635785"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3,4]]},"references-count":59,"alternative-id":["10.1145\/3616855.3635785","10.1145\/3616855"],"URL":"https:\/\/doi.org\/10.1145\/3616855.3635785","relation":{},"subject":[],"published":{"date-parts":[[2024,3,4]]},"assertion":[{"value":"2024-03-04","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}