{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,3]],"date-time":"2025-05-03T18:10:09Z","timestamp":1746295809256,"version":"3.40.4"},"publisher-location":"New York, NY, USA","reference-count":32,"publisher":"ACM","funder":[{"name":"Hybrid Intelligence Center"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,6,19]]},"DOI":"10.1145\/3594536.3595125","type":"proceedings-article","created":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T23:40:01Z","timestamp":1694130001000},"page":"323-332","update-policy":"https:\/\/doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["Using Agent-Based Simulations to Evaluate Bayesian Networks for Criminal Scenarios"],"prefix":"10.1145","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3165-4376","authenticated-orcid":false,"given":"Ludi","family":"van Leeuwen","sequence":"first","affiliation":[{"name":"Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8927-8751","authenticated-orcid":false,"given":"Bart","family":"Verheij","sequence":"additional","affiliation":[{"name":"Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3829-0106","authenticated-orcid":false,"given":"Rineke","family":"Verbrugge","sequence":"additional","affiliation":[{"name":"Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4339-8146","authenticated-orcid":false,"given":"Silja","family":"Renooij","sequence":"additional","affiliation":[{"name":"Department of Information and Computing Sciences, Utrecht University"}]}],"member":"320","published-online":{"date-parts":[[2023,9,7]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"Proceedings of COMMA","author":"Bex F.","year":"2016","unstructured":"F. Bex and S. Renooij. 2016. From arguments to constraints on a Bayesian Network. In Computational Models of Argument. Proceedings of COMMA 2016. IOS Press, Amsterdam, 95--106."},{"doi-asserted-by":"publisher","unstructured":"D. Birks M. Townsley and A. Stewart. 2012. Generative explanations of crime: Using simulation to test criminological theory. Criminology 50 (02 2012) 221--254. https:\/\/doi.org\/10.1111\/j.1745-9125.2011.00258.x","key":"e_1_3_2_1_2_1","DOI":"10.1111\/j.1745-9125.2011.00258.x"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_3_1","DOI":"10.1016\/S1355-0306(98)72117-3"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_4_1","DOI":"10.1111\/tops.12419"},{"key":"e_1_3_2_1_5_1","volume-title":"Causality: Objectives and Assessment (NIPS 2008 Workshop), I. Guyon, D. Janzing, and B. Sch\u00f6lkopf (Eds.). jmlr.org, 59--86","author":"Dawid A. P.","year":"2010","unstructured":"A. P. Dawid. 2010. Beware of the DAG! In JMLR Workshop and Conference Proceedings: Volume 6. Causality: Objectives and Assessment (NIPS 2008 Workshop), I. Guyon, D. Janzing, and B. Sch\u00f6lkopf (Eds.). jmlr.org, 59--86."},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_6_1","DOI":"10.1016\/j.scijus.2019.09.001"},{"doi-asserted-by":"crossref","unstructured":"M. Di Bello and B. Verheij. 2018. Evidential reasoning. In Handbook of Legal Reasoning and Argumentation G. Bongiovanni G. Postema A. Rotolo G. Sartor C. Valentini and D. N. Walton (Eds.). Springer Dordrecht 447--493.","key":"e_1_3_2_1_7_1","DOI":"10.1007\/978-90-481-9452-0_16"},{"key":"e_1_3_2_1_8_1","volume-title":"10th International Conference on Probabilistic Graphical Models (Proceedings of Machine Learning Research)","volume":"138","author":"Ducamp G.","unstructured":"G. Ducamp, C. Gonzales, and P. Wuillemin. 2020. aGrUM\/pyAgrum: A toolbox to build models and algorithms for probabilistic graphical models in Python. In 10th International Conference on Probabilistic Graphical Models (Proceedings of Machine Learning Research), Vol. 138. Sk\u00f8rping, Denmark, 609--612. https:\/\/hal.archives-ouvertes.fr\/hal-03135721"},{"volume-title":"The 16th International Conference on Artificial Intelligence and Law (ICAIL 2017). Proceedings of the Conference. ICAIL, ACM","author":"Fenton N.","unstructured":"N. Fenton, D. Lagnado, C. Dahlman, and M. Neil. 2017. The opportunity prior: A simple and practical solution to the prior probability problem for legal cases. In The 16th International Conference on Artificial Intelligence and Law (ICAIL 2017). Proceedings of the Conference. ICAIL, ACM, New York (New York).","key":"e_1_3_2_1_9_1"},{"unstructured":"N. Fenton M. Neil and D. A. Lagnado. 2011. Modelling mutually exclusive causes in Bayesian Networks. (2011). Available online: http:\/\/www.eecs.qmul.ac.uk\/~norman\/papers\/mutual_IEEE_format_version.pdf.","key":"e_1_3_2_1_10_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_11_1","DOI":"10.1111\/cogs.12004"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_12_1","DOI":"10.1111\/tops.12417"},{"doi-asserted-by":"crossref","unstructured":"A. Gebharter and D. Koch. 2021. Combining causal Bayes Nets and Cellular Automata: A hybrid modelling approach to mechanisms. The British Journal for the Philosophy of Science (2021).","key":"e_1_3_2_1_13_1","DOI":"10.1093\/bjps\/axy049"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_14_1","DOI":"10.1186\/s40163-014-0014-1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_15_1","DOI":"10.1007\/BF02512229"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_16_1","DOI":"10.1007\/s10940-018-9376-y"},{"doi-asserted-by":"crossref","unstructured":"J. B. Kadane and D. A. Schum. 1996. A Probabilistic Analysis of the Sacco and Vanzetti Evidence. Wiley Chichester.","key":"e_1_3_2_1_17_1","DOI":"10.1002\/9781118150580"},{"doi-asserted-by":"crossref","unstructured":"J. Kazil D. Masad and A. Crooks. 2020. Utilizing Python for agent-based modeling: The Mesa framework. In Social Cultural and Behavioral Modeling R. Thomson H. Bisgin C. Dancy A. Hyder and M. Hussain (Eds.). Springer International Publishing Cham 308--317.","key":"e_1_3_2_1_18_1","DOI":"10.1007\/978-3-030-61255-9_30"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_19_1","DOI":"10.1007\/s10109-012-0171-2"},{"doi-asserted-by":"crossref","unstructured":"R. Meester and K. Slooten. 2021. Probability and Forensic Evidence. Cambridge University Press Cambridge.","key":"e_1_3_2_1_20_1","DOI":"10.1017\/9781108596176"},{"volume-title":"Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference","author":"Pearl J.","unstructured":"J.Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Francisco (California).","key":"e_1_3_2_1_21_1"},{"doi-asserted-by":"crossref","unstructured":"N. Pennington and R. Hastie. 1993. Inside the Juror. Cambridge University Press Cambridge Chapter The Story Model for Juror Decision Making 192--221.","key":"e_1_3_2_1_22_1","DOI":"10.1017\/CBO9780511752896.010"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_23_1","DOI":"10.1016\/S0888-613X(99)00027-4"},{"volume-title":"Legal Knowledge and Information Systems: JURIX 2019: The Thirty-second Annual Conference, M. Araszkiewicz and V. Rodr\u00edguez-Doncel (Eds.). IOS Press","author":"van Leeuwen L.","unstructured":"L. van Leeuwen and B. Verheij. 2019. A comparison of two hybrid methods for analysing evidential reasoning. In Legal Knowledge and Information Systems: JURIX 2019: The Thirty-second Annual Conference, M. Araszkiewicz and V. Rodr\u00edguez-Doncel (Eds.). IOS Press, Amsterdam, 53--62.","key":"e_1_3_2_1_24_1"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_25_1","DOI":"10.1093\/lpr"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_26_1","DOI":"10.1007\/s10506-016-9183-4"},{"key":"e_1_3_2_1_27_1","volume-title":"When Stories and Numbers Meet in Court. Constructing and Explaining Bayesian Networks for Criminal Cases with Scenarios. Dissertation","author":"Vlek C. S.","year":"2016","unstructured":"C. S. Vlek. 2016. When Stories and Numbers Meet in Court. Constructing and Explaining Bayesian Networks for Criminal Cases with Scenarios. Dissertation. University of Groningen, Groningen."},{"volume-title":"The Psychology of Criminal Evidence. Harvester Wheatsheaf","author":"Wagenaar W. A.","unstructured":"W. A. Wagenaar, P. J. van Koppen, and H. F. M. Crombag. 1993. Anchored Narratives. The Psychology of Criminal Evidence. Harvester Wheatsheaf, London.","key":"e_1_3_2_1_28_1"},{"volume-title":"European Conference on Symbolic and Quantitative Approaches with Uncertainty. Springer, Cham, 99--110","author":"Wieten R.","unstructured":"R. Wieten, F. Bex, S. Renooij, and H. Prakken. 2019. Constructing Bayesian Network graphs from labeled arguments. In European Conference on Symbolic and Quantitative Approaches with Uncertainty. Springer, Cham, 99--110.","key":"e_1_3_2_1_29_1"},{"key":"e_1_3_2_1_30_1","volume-title":"The Principles of Judicial Proof or the Process of Proof as Given by Logic, Psychology, and General Experience, and Illustrated in Judicial Trials","author":"Wigmore J. H.","unstructured":"J. H. Wigmore. 1931. The Principles of Judicial Proof or the Process of Proof as Given by Logic, Psychology, and General Experience, and Illustrated in Judicial Trials, 2nd ed. Little, Brown and Company, Boston (Massachusetts).","edition":"2"},{"doi-asserted-by":"publisher","key":"e_1_3_2_1_31_1","DOI":"10.1016\/S0888-613X(02)00151-2"},{"doi-asserted-by":"crossref","unstructured":"H. Zhu and F. Wang. 2021. An agent-based model for simulating urban crime with improved daily routines. Computers Environment and Urban Systems (2021).","key":"e_1_3_2_1_32_1","DOI":"10.1016\/j.compenvurbsys.2021.101680"}],"event":{"sponsor":["IAAIL Intl Asso for Artifical Intel & Law","UMinho University of Minho","SIGAI ACM Special Interest Group on Artificial Intelligence","AAAI Am Assoc for Artifical Intelligence"],"acronym":"ICAIL 2023","name":"ICAIL 2023: Nineteenth International Conference on Artificial Intelligence and Law","location":"Braga Portugal"},"container-title":["Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3594536.3595125","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,5,3]],"date-time":"2025-05-03T17:42:30Z","timestamp":1746294150000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3594536.3595125"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,19]]},"references-count":32,"alternative-id":["10.1145\/3594536.3595125","10.1145\/3594536"],"URL":"https:\/\/doi.org\/10.1145\/3594536.3595125","relation":{},"subject":[],"published":{"date-parts":[[2023,6,19]]},"assertion":[{"value":"2023-09-07","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}