{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:32:05Z","timestamp":1726763525518},"reference-count":78,"publisher":"Association for Computing Machinery (ACM)","issue":"4","funder":[{"name":"NCN"},{"DOI":"10.13039\/100011929","name":"Foundation for Food and Agriculture Research","doi-asserted-by":"publisher","award":["602757"],"id":[{"id":"10.13039\/100011929","id-type":"DOI","asserted-by":"publisher"}]},{"name":"KAUST individual baseline funding"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["ACM Trans. Graph."],"published-print":{"date-parts":[[2023,8]]},"abstract":"Computer graphics has dedicated a considerable amount of effort to generating realistic models of trees and plants. Many existing methods leverage procedural modeling algorithms - that often consider biological findings - to generate branching structures of individual trees. While the realism of tree models generated by these algorithms steadily increases, most approaches neglect to model the root system of trees. However, the root system not only adds to the visual realism of tree models but also plays an important role in the development of trees. In this paper, we advance tree modeling in the following ways: First, we define a physically-plausible soil model to simulate resource gradients, such as water and nutrients. Second, we propose a novel developmental procedural model for tree roots that enables us to emergently develop root systems that adapt to various soil types. Third, we define long-distance signaling to coordinate the development of shoots and roots. We show that our advanced procedural model of tree development enables - for the first time - the generation of trees with their root systems.<\/jats:p>","DOI":"10.1145\/3592145","type":"journal-article","created":{"date-parts":[[2023,7,26]],"date-time":"2023-07-26T14:29:21Z","timestamp":1690381761000},"page":"1-16","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":5,"title":["Rhizomorph: The Coordinated Function of Shoots and Roots"],"prefix":"10.1145","volume":"42","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1816-7007","authenticated-orcid":false,"given":"Bosheng","family":"Li","sequence":"first","affiliation":[{"name":"Purdue University, Lafayette, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6560-0988","authenticated-orcid":false,"given":"Jonathan","family":"Klein","sequence":"additional","affiliation":[{"name":"King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1621-325X","authenticated-orcid":false,"given":"Dominik L.","family":"Michels","sequence":"additional","affiliation":[{"name":"King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5293-2112","authenticated-orcid":false,"given":"Bedrich","family":"Benes","sequence":"additional","affiliation":[{"name":"Purdue University, Lafayette, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1937-9797","authenticated-orcid":false,"given":"S\u00f6ren","family":"Pirk","sequence":"additional","affiliation":[{"name":"Adobe Research, San Jose, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2374-346X","authenticated-orcid":false,"given":"Wojtek","family":"Pa\u0142ubicki","sequence":"additional","affiliation":[{"name":"Adam Mickiewicz University, Poznan, Poland"}]}],"member":"320","published-online":{"date-parts":[[2023,7,26]]},"reference":[{"key":"e_1_2_2_1_1","doi-asserted-by":"crossref","unstructured":"F. Anastacio M. C. Sousa F. Samavati and J. A. Jorge. 2006. Modeling Plant Structures Using Concept Sketches (NPAR '06). ACM 105--113.","DOI":"10.1145\/1124728.1124746"},{"key":"e_1_2_2_2_1","doi-asserted-by":"crossref","unstructured":"M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput. Graph. Appl. 4(5) (1984) 10--34.","DOI":"10.1109\/MCG.1984.276141"},{"key":"e_1_2_2_3_1","doi-asserted-by":"crossref","unstructured":"O. Argudo A. Chica and C. Andujar. 2016. Single-picture Reconstruction and Rendering of Trees for Plausible Vegetation Synthesis. Comput. Graph. 57 C (2016) 55--67.","DOI":"10.1016\/j.cag.2016.03.005"},{"key":"e_1_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.2307\/2388534"},{"key":"e_1_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.5555\/2381692.2381694"},{"key":"e_1_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1016\/S1369-5266(00)00136-9"},{"key":"e_1_2_2_7_1","doi-asserted-by":"crossref","unstructured":"G. Biddle. 2001. Tree Root Damage to Buildings. (2001) 1--23.","DOI":"10.1061\/40592(270)1"},{"key":"e_1_2_2_8_1","volume-title":"Modeling of Root Nitrate Responses Suggests Preferential Foraging Arises From the Integration of Demand, Supply and Local Presence Signals. Frontiers in Plant Science 11","author":"Boer M. D.","year":"2020","unstructured":"M. D. Boer, J. Santos Teixeira, and K. H. Ten Tusscher. 2020. Modeling of Root Nitrate Responses Suggests Preferential Foraging Arises From the Integration of Demand, Supply and Local Presence Signals. Frontiers in Plant Science 11 (2020)."},{"key":"e_1_2_2_9_1","doi-asserted-by":"crossref","unstructured":"D. Bradley D. Nowrouzezahrai and P. Beardsley. 2013. Image-based Reconstruction and Synthesis of Dense Foliage. ACM TOG 32 4 Article 74 (2013) 74:1--74:10 pages.","DOI":"10.1145\/2461912.2461952"},{"key":"e_1_2_2_10_1","volume-title":"The Structure and Life of Forest Trees","author":"Busgen M.","unstructured":"M. Busgen. 2007. The Structure and Life of Forest Trees. Read Books."},{"key":"e_1_2_2_11_1","doi-asserted-by":"crossref","unstructured":"X. Chen B. Neubert Y.-Q. Xu O. Deussen and S. B. Kang. 2008. Sketch-Based Tree Modeling Using Markov Random Field. ACM TOG 27 5 Article 109 (Dec. 2008).","DOI":"10.1145\/1457515.1409062"},{"key":"e_1_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073667"},{"key":"e_1_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1139\/x87-122"},{"key":"e_1_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1051\/forest:19890565"},{"key":"e_1_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1080\/03071375.1990.9746846"},{"key":"e_1_2_2_16_1","doi-asserted-by":"crossref","unstructured":"F. Danjon and B. Reubens. 2008. Assessing and analyzing 3D architecture of woody root systems a review of methods and applications in tree and soil stability resource acquisition and allocation. Plant and Soil 303 1 (01 Feb 2008) 1--34.","DOI":"10.1007\/s11104-007-9470-7"},{"key":"e_1_2_2_17_1","unstructured":"M. Dobson Arboricultural Advisory and Information Service (Great Britain). 1995. Tree Root Systems. Arboricultural Advisory & Information Service."},{"key":"e_1_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/3450626.3459952"},{"key":"e_1_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.1080\/03071375.1990.9746845"},{"key":"e_1_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.24266\/0738-2898-8.4.215"},{"key":"e_1_2_2_21_1","volume-title":"Detailing Tree Skeleton with Voxel Automata. SIGGRAPH'91","author":"Greene N.","year":"1991","unstructured":"N. Greene. 1991. Detailing Tree Skeleton with Voxel Automata. SIGGRAPH'91, Course Notes on Photorealistic Volume Modeling and Rendering Techniques (1991)."},{"key":"e_1_2_2_22_1","doi-asserted-by":"crossref","unstructured":"D. Groenendyk T. Ferr\u00e9 K. Thorp and A. Rice. 2015. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function. PloS one 10 (06 2015) e0131299.","DOI":"10.1371\/journal.pone.0131299"},{"key":"e_1_2_2_23_1","doi-asserted-by":"crossref","unstructured":"J. Guo H. Jiang B. Benes O. Deussen X. Zhang D. Lischinski and H. Huang. 2020. Inverse Procedural Modeling of Branching Structures by Inferring L-Systems. ACM TOG 39 5 Article 155 (June 2020) 13 pages.","DOI":"10.1145\/3394105"},{"key":"e_1_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2009.01391.x"},{"key":"e_1_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/3450626.3459954"},{"key":"e_1_2_2_26_1","first-page":"2","article-title":"Interactive Modeling and Authoring of Climbing","volume":"36","author":"H\u00e4drich T.","year":"2017","unstructured":"T. H\u00e4drich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and Authoring of Climbing Plants. Comput. Graph. Forum 36, 2 (May 2017), 49--61.","journal-title":"Plants. Comput. Graph. Forum"},{"key":"e_1_2_2_27_1","unstructured":"E. J. Hodgkins and N. G. Nichols. 1977. Extent of Main Lateral Roots in Natural Longleaf Pine as Related to Position and Age of the Trees. Forest Science 23 2 (06 1977) 161--166."},{"key":"e_1_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1016\/0022-5193(71)90191-3"},{"key":"e_1_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2006.00981.x"},{"key":"e_1_2_2_30_1","volume-title":"Scale: A Paradigm to Efficiently Leverage Machine Learning in Agriculture. SSRN 4314564","author":"Klein J.","year":"2023","unstructured":"J. Klein, R. E. Waller, S. Pirk, W. Pa\u0142ubicki, M. Tester, and D. L. Michels. 2023. Synthetic Data at Scale: A Paradigm to Efficiently Leverage Machine Learning in Agriculture. SSRN 4314564 (2023)."},{"key":"e_1_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.baae.2010.02.004"},{"key":"e_1_2_2_32_1","doi-asserted-by":"publisher","DOI":"10.1111\/cgf.12566"},{"key":"e_1_2_2_33_1","doi-asserted-by":"crossref","unstructured":"D. Leitner S. Klepsch G. Bodner and A. Schnepf. 2010. A dynamic root system growth model based on L-Systems. Plant and Soil 332 1 (01 Jul 2010) 177--192.","DOI":"10.1007\/s11104-010-0284-7"},{"key":"e_1_2_2_34_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cub.2011.02.031"},{"key":"e_1_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/3478513.3480525"},{"key":"e_1_2_2_36_1","doi-asserted-by":"crossref","unstructured":"C. Li O. Deussen Y.-Z. Song P. Willis and P. Hall. 2011. Modeling and Generating Moving Trees from Video. ACM TOG 30 6 Article 127 (2011) 127:1--127:12 pages.","DOI":"10.1145\/2070781.2024161"},{"key":"e_1_2_2_37_1","doi-asserted-by":"crossref","unstructured":"Y. Li X. Fan N. J. Mitra D. Chamovitz D. Cohen-Or and B. Chen. 2013. Analyzing Growing Plants from 4D Point Cloud Data. ACM TOG 32 6 Article 157 (2013).","DOI":"10.1145\/2508363.2508368"},{"key":"e_1_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/3478513.3480486"},{"key":"e_1_2_2_39_1","volume-title":"Texture-Lobes for Tree Modelling. In ACM SIGGRAPH 2011 Papers (SIGGRAPH '11)","author":"Livny Y.","unstructured":"Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011. Texture-Lobes for Tree Modelling. In ACM SIGGRAPH 2011 Papers (SIGGRAPH '11). ACM, Article 53, 10 pages."},{"key":"e_1_2_2_40_1","volume-title":"Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling (SBIM '12)","author":"Longay S.","unstructured":"S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: Interactive Procedural Modeling of Trees on a Tablet. In Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling (SBIM '12). 107--120."},{"key":"e_1_2_2_41_1","doi-asserted-by":"crossref","unstructured":"Y. Lu Y. Wang Z. Chen A. Khan C. Salvaggio and G. Lu. 2021. 3D plant root system reconstruction based on fusion of deep structure-from-motion and IMU. Multimedia Tools and Applications 80 11 (01 May 2021) 17315--17331.","DOI":"10.1007\/s11042-020-10069-3"},{"key":"e_1_2_2_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/3306346.3323039"},{"key":"e_1_2_2_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cub.2017.06.043"},{"key":"e_1_2_2_44_1","volume-title":"Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '96)","author":"M\u011bch R.","unstructured":"R. M\u011bch and P. Prusinkiewicz. 1996. Visual Models of Plants Interacting with Their Environment. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '96). ACM, 397--410."},{"key":"e_1_2_2_45_1","doi-asserted-by":"crossref","unstructured":"B. Neubert T. Franken and O. Deussen. 2007. Approximate Image-based Tree-modeling Using Particle Flows. ACM TOG 26 3 Article 88 (2007).","DOI":"10.1145\/1276377.1276487"},{"key":"e_1_2_2_46_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00425-018-3011-x"},{"key":"e_1_2_2_47_1","doi-asserted-by":"crossref","unstructured":"M. Okabe S. Owada and T. Igarashi. 2007. Interactive Design of Botanical Trees Using Freehand Sketches and Example-based Editing. In ACM SIGGRAPH Courses (San Diego California). ACM Article 26.","DOI":"10.1145\/1281500.1281537"},{"key":"e_1_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/15886.15892"},{"key":"e_1_2_2_49_1","doi-asserted-by":"publisher","DOI":"10.1145\/1531326.1531364"},{"key":"e_1_2_2_50_1","doi-asserted-by":"publisher","DOI":"10.1145\/3528223.3530146"},{"key":"e_1_2_2_51_1","doi-asserted-by":"publisher","DOI":"10.1145\/3130800.3130814"},{"key":"e_1_2_2_52_1","doi-asserted-by":"crossref","unstructured":"S. Pirk T. Niese O. Deussen and B. Neubert. 2012a. Capturing and animating the morphogenesis of polygonal tree models. ACM TOG 31 6 Article 169 (2012) 169:1--169:10 pages.","DOI":"10.1145\/2366145.2366188"},{"key":"e_1_2_2_53_1","doi-asserted-by":"publisher","DOI":"10.1145\/2661229.2661252"},{"key":"e_1_2_2_54_1","doi-asserted-by":"publisher","DOI":"10.1145\/2185520.2185546"},{"key":"e_1_2_2_55_1","unstructured":"A Plus. 2023. 3 Types of Tree Root Systems. online. https:\/\/aplustree.com\/3-types-of-tree-root-systems\/"},{"key":"e_1_2_2_56_1","volume-title":"Proc. on Graph. Interf. 247--253","author":"Prusinkiewicz P.","year":"1986","unstructured":"P. Prusinkiewicz. 1986. Graphical applications of L-systems. In Proc. on Graph. Interf. 247--253."},{"key":"e_1_2_2_57_1","volume-title":"The Algorithmic Beauty of Plants","author":"Prusinkiewicz P.","unstructured":"P. Prusinkiewicz and Aristid Lindenmayer. 1990. The Algorithmic Beauty of Plants. Springer-Verlag New York, Inc."},{"key":"e_1_2_2_58_1","doi-asserted-by":"crossref","unstructured":"J. Puig G. Pauluzzi E. Guiderdoni and P. Gantet. 2012. Regulation of Shoot and Root Development through Mutual Signaling. Molecular plant 5 (05 2012) 974--83.","DOI":"10.1093\/mp\/sss047"},{"key":"e_1_2_2_59_1","doi-asserted-by":"publisher","DOI":"10.1145\/1141911.1141929"},{"key":"e_1_2_2_60_1","first-page":"1717","article-title":"Real-Time Interactive Tree Animation","volume":"24","author":"Quigley E.","year":"2018","unstructured":"E. Quigley, Y. Yu, J. Huang, W. Lin, and R. Fedkiw. 2018. Real-Time Interactive Tree Animation. IEEE TVCG 24, 5 (2018), 1717--1727.","journal-title":"IEEE TVCG"},{"key":"e_1_2_2_61_1","doi-asserted-by":"publisher","DOI":"10.1145\/1015706.1015785"},{"key":"e_1_2_2_62_1","doi-asserted-by":"publisher","DOI":"10.1145\/325165.325250"},{"key":"e_1_2_2_63_1","unstructured":"A. Runions B. Lane and P. Prusinkiewicz. 2007. Modeling Trees with a Space Colonization Algorithm. EG Nat. Phenom. (2007) 63--70."},{"key":"e_1_2_2_64_1","unstructured":"H. Shao T. Kugelstadt T. H\u00e4drich W. Pa\u0142ubicki J. Bender S. Pirk and D. L. Michels. 2021. Accurately Solving Rod Dynamics with Graph Learning. In NeurIPS."},{"key":"e_1_2_2_65_1","first-page":"97","article-title":"A quantitative analysis of plant form - the pipe model theory I. Basic analysis","volume":"14","author":"Shinozaki K.","year":"1964","unstructured":"K. Shinozaki, K. Yoda, K. Hozumi, and T. Kira. 1964. A quantitative analysis of plant form - the pipe model theory I. Basic analysis. Japanese Journal of Ecology 14 (1964), 97--104. Issue 3.","journal-title":"Japanese Journal of Ecology"},{"key":"e_1_2_2_66_1","doi-asserted-by":"crossref","unstructured":"O. Stava S. Pirk J. Kratt B. Chen R. M\u011bch O. Deussen and B. Benes. 2014. Inverse Procedural Modelling of Trees. Computer Graphics Forum (2014) n\/a-n\/a.","DOI":"10.1111\/cgf.12282"},{"key":"e_1_2_2_67_1","doi-asserted-by":"publisher","DOI":"10.1016\/0378-1127(91)90245-Q"},{"key":"e_1_2_2_68_1","unstructured":"B.B. Stout. 1956. Studies of the Root Systems of Deciduous Trees. Black Rock Forest."},{"key":"e_1_2_2_69_1","first-page":"264","article-title":"Root system morphogenesis","volume":"10","author":"Sutton R. F.","year":"1980","unstructured":"R. F. Sutton. 1980. Root system morphogenesis. NZJ For. Sci 10, 1 (1980), 264--292.","journal-title":"NZJ For. Sci"},{"key":"e_1_2_2_70_1","volume-title":"Soil properties and root development in forest trees: a review. Information report OX-Canadian Forestry Service","author":"Sutton R. F.","year":"1991","unstructured":"R. F. Sutton. 1991. Soil properties and root development in forest trees: a review. Information report OX-Canadian Forestry Service, Great Lakes Forestry Centre (1991)."},{"key":"e_1_2_2_71_1","doi-asserted-by":"crossref","unstructured":"P. Tan T. Fang J. Xiao P. Zhao and L. Quan. 2008. Single Image Tree Modeling. ACM TOG 27 5 Article 108 (2008) 7 pages.","DOI":"10.1145\/1409060.1409061"},{"key":"e_1_2_2_72_1","doi-asserted-by":"crossref","unstructured":"B. Tobin J. \u010cerm\u00e1k D. Chiatante F. Danjon A. Di Iorio L. Dupuy A. Eshel C. Jourdan T. Kalliokoski R. Laiho N. Nadezhdina B. Nicoll L. Pag\u00e8s J. Silva and I. Spanos. 2007. Towards developmental modelling of tree root systems. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 141 3 (2007) 481--501.","DOI":"10.1080\/11263500701626283"},{"key":"e_1_2_2_73_1","doi-asserted-by":"crossref","unstructured":"G. Vercambre L. Pag\u00e8s C. Doussan and R. Habib. 2003. Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plant and Soil 251 1 (01 Apr 2003) 1--11.","DOI":"10.1023\/A:1022961513239"},{"key":"e_1_2_2_74_1","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073655"},{"key":"e_1_2_2_75_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8659.2009.01394.x"},{"key":"e_1_2_2_76_1","volume-title":"A Procedural Approach to Modelling Virtual Climbing Plants With Tendrils. Comput. Graph. Forum","author":"Wong S.-K.","year":"2015","unstructured":"S.-K. Wong and K.-C. Chen. 2015. A Procedural Approach to Modelling Virtual Climbing Plants With Tendrils. Comput. Graph. Forum (2015)."},{"key":"e_1_2_2_77_1","doi-asserted-by":"crossref","unstructured":"H. Xu N. Gossett and B. Chen. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. ACM TOG 26 4 (2007) Article 19 13 pages.","DOI":"10.1145\/1289603.1289610"},{"key":"e_1_2_2_78_1","doi-asserted-by":"crossref","unstructured":"Y. Zhao and J. Barbi\u010d. 2013. Interactive Authoring of Simulation-ready Plants. ACM TOG 32 4 Article 84 (2013) 12 pages.","DOI":"10.1145\/2461912.2461961"}],"container-title":["ACM Transactions on Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3592145","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,3]],"date-time":"2024-03-03T03:47:16Z","timestamp":1709437636000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3592145"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,26]]},"references-count":78,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2023,8]]}},"alternative-id":["10.1145\/3592145"],"URL":"https:\/\/doi.org\/10.1145\/3592145","relation":{},"ISSN":["0730-0301","1557-7368"],"issn-type":[{"value":"0730-0301","type":"print"},{"value":"1557-7368","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,7,26]]},"assertion":[{"value":"2023-07-26","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}