{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T22:16:06Z","timestamp":1730326566337,"version":"3.28.0"},"publisher-location":"New York, NY, USA","reference-count":44,"publisher":"ACM","license":[{"start":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T00:00:00Z","timestamp":1720569600000},"content-version":"vor","delay-in-days":366,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"DOI":"10.13039\/100000001","name":"NSF (National Science Foundation)","doi-asserted-by":"publisher","award":["CNS-1650551, OIA-1946231, CNS-2231682, OIA- 2229752"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,7,10]]},"DOI":"10.1145\/3591197.3591304","type":"proceedings-article","created":{"date-parts":[[2023,6,9]],"date-time":"2023-06-09T14:58:49Z","timestamp":1686322729000},"page":"1-8","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["A First Look at the Security of EEG-based Systems and Intelligent Algorithms under Physical Signal Injections"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5612-7858","authenticated-orcid":false,"given":"Md Imran","family":"Hossen","sequence":"first","affiliation":[{"name":"University of Louisiana at Lafayette, United States of America"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7640-1829","authenticated-orcid":false,"given":"Yazhou","family":"Tu","sequence":"additional","affiliation":[{"name":"University of Louisiana at Lafayette, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2438-5430","authenticated-orcid":false,"given":"Xiali","family":"Hei","sequence":"additional","affiliation":[{"name":"University of Louisiana at Lafayette, United States of America"}]}],"member":"320","published-online":{"date-parts":[[2023,7,10]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"2022. HackRF One. https:\/\/greatscottgadgets.com\/hackrf\/one\/."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"crossref","unstructured":"Emina Alickovic Jasmin Kevric and Abdulhamit Subasi. 2018. Performance evaluation of empirical mode decomposition discrete wavelet transform and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomedical signal processing and control 39 (2018) 94\u2013102.","DOI":"10.1016\/j.bspc.2017.07.022"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN48605.2020.9206696"},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.64.061907"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1080\/21646821.2017.1256722"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/3535509"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.26599\/BSA.2020.9050017"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"crossref","unstructured":"Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee symposium on security and privacy (sp). Ieee 39\u201357.","DOI":"10.1109\/SP.2017.49"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.14722\/ndss.2017.23408"},{"key":"e_1_3_2_1_10_1","volume-title":"Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Science robotics 4, 31","author":"Edelman J","year":"2019","unstructured":"Bradley\u00a0J Edelman, Jianjun Meng, Daniel Suma, Claire Zurn, E Nagarajan, BS Baxter, Christopher\u00a0C Cline, and BJSR He. 2019. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Science robotics 4, 31 (2019), eaaw6844."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-29959-0_25"},{"key":"e_1_3_2_1_13_1","volume-title":"Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572","author":"Goodfellow J","year":"2014","unstructured":"Ian\u00a0J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)."},{"key":"e_1_3_2_1_14_1","volume-title":"Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733","author":"Gu Tianyu","year":"2017","unstructured":"Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)."},{"key":"e_1_3_2_1_15_1","first-page":"692","article-title":"Glucose monitorying method and system","volume":"16","author":"Hei Xiali","year":"2021","unstructured":"Xiali Hei and Yazhou Tu. 2021. Glucose monitorying method and system. US Patent App. 16\/952,692.","journal-title":"US Patent App."},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1542\/peds.94.2.148"},{"key":"e_1_3_2_1_17_1","volume-title":"Refractory epilepsy is a life-threatening disease: Lest we forget","author":"Jette Nathalie","year":"1932","unstructured":"Nathalie Jette and Jerome Engel. 2016. Refractory epilepsy is a life-threatening disease: Lest we forget., 1932\u20131933\u00a0pages."},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1109\/TEMC.2015.2463089"},{"key":"e_1_3_2_1_19_1","volume-title":"Automatic identification and removal of ocular artifacts from EEG using wavelet transform. Measurement science review 6, 4","author":"Krishnaveni V","year":"2006","unstructured":"V Krishnaveni, S Jayaraman, S Aravind, V Hariharasudhan, and K Ramadoss. 2006. Automatic identification and removal of ocular artifacts from EEG using wavelet transform. Measurement science review 6, 4 (2006), 45\u201357."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP.2013.20"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2019.01.026"},{"key":"e_1_3_2_1_22_1","volume-title":"Backdoor learning: A survey","author":"Li Yiming","year":"2022","unstructured":"Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2022. Backdoor learning: A survey. IEEE Transactions on Neural Networks and Learning Systems (2022)."},{"key":"e_1_3_2_1_23_1","volume-title":"Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083","author":"Madry Aleksander","year":"2017","unstructured":"Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)."},{"key":"e_1_3_2_1_24_1","volume-title":"21st USENIX Security Symposium (USENIX Security 12)","author":"Martinovic Ivan","year":"2012","unstructured":"Ivan Martinovic, Doug Davies, Mario Frank, Daniele Perito, Tomas Ros, and Dawn Song. 2012. On the Feasibility of { Side-Channel} Attacks with { Brain-Computer} Interfaces. In 21st USENIX Security Symposium (USENIX Security 12). 143\u2013158."},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.seizure.2006.10.002"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.0013-9580.2004.05503.x"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM42002.2020.9322472"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1186\/s12911-021-01462-5"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.seizure.2016.05.018"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/1653662.1653712"},{"volume-title":"EMC of analog integrated circuits","author":"Redout\u00e9 Jean-Michel","key":"e_1_3_2_1_31_1","unstructured":"Jean-Michel Redout\u00e9 and Michiel Steyaert. 2009. EMC of analog integrated circuits. Springer Science & Business Media."},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2018.07.019"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.3390\/ijerph18115780"},{"key":"e_1_3_2_1_34_1","volume-title":"A review of epileptic seizure detection using machine learning classifiers. Brain informatics 7, 1","author":"Siddiqui Mohammad\u00a0Khubeb","year":"2020","unstructured":"Mohammad\u00a0Khubeb Siddiqui, Ruben Morales-Menendez, Xiaodi Huang, and Nasir Hussain. 2020. A review of epileptic seizure detection using machine learning classifiers. Brain informatics 7, 1 (2020), 1\u201318."},{"key":"e_1_3_2_1_35_1","volume-title":"Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199","author":"Szegedy Christian","year":"2013","unstructured":"Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)."},{"key":"e_1_3_2_1_36_1","volume-title":"Fundamentals of EEG measurement. Measurement science review 2, 2","author":"Michal Teplan","year":"2002","unstructured":"Michal Teplan 2002. Fundamentals of EEG measurement. Measurement science review 2, 2 (2002), 1\u201311."},{"key":"e_1_3_2_1_37_1","volume-title":"Estimating cognitive workload in an interactive virtual reality environment using EEG. Frontiers in human neuroscience 13","author":"Tremmel Christoph","year":"2019","unstructured":"Christoph Tremmel, Christian Herff, Tetsuya Sato, Krzysztof Rechowicz, Yusuke Yamani, and Dean\u00a0J Krusienski. 2019. Estimating cognitive workload in an interactive virtual reality environment using EEG. Frontiers in human neuroscience 13 (2019), 401."},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/3319535.3354195"},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1145\/3433210.3453097"},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2010.2042245"},{"key":"e_1_3_2_1_41_1","volume-title":"Adversarial examples: Attacks and defenses for deep learning","author":"Yuan Xiaoyong","year":"2019","unstructured":"Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples: Attacks and defenses for deep learning. IEEE transactions on neural networks and learning systems 30, 9 (2019), 2805\u20132824."},{"key":"e_1_3_2_1_42_1","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134052"},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2020.01.011"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNSRE.2019.2908955"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1109\/SP40000.2020.00001"}],"event":{"name":"ASIA CCS '23: ACM Asia Conference on Computer and Communications Security","sponsor":["SIGSAC ACM Special Interest Group on Security, Audit, and Control"],"location":"Melbourne VIC Australia","acronym":"ASIA CCS '23"},"container-title":["Proceedings of the 2023 Secure and Trustworthy Deep Learning Systems Workshop"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3591197.3591304","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3591197.3591304","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T10:35:34Z","timestamp":1720607734000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3591197.3591304"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,10]]},"references-count":44,"alternative-id":["10.1145\/3591197.3591304","10.1145\/3591197"],"URL":"https:\/\/doi.org\/10.1145\/3591197.3591304","relation":{},"subject":[],"published":{"date-parts":[[2023,7,10]]},"assertion":[{"value":"2023-07-10","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}